論文の概要: Large Language Models Miss the Multi-Agent Mark
- arxiv url: http://arxiv.org/abs/2505.21298v2
- Date: Wed, 11 Jun 2025 09:42:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 02:07:43.217897
- Title: Large Language Models Miss the Multi-Agent Mark
- Title(参考訳): 大規模言語モデルはマルチエージェントマークを欠いている
- Authors: Emanuele La Malfa, Gabriele La Malfa, Samuele Marro, Jie M. Zhang, Elizabeth Black, Michael Luck, Philip Torr, Michael Wooldridge,
- Abstract要約: 我々は,MAS理論と現在のMAS LLM実装の相違点を強調した。
我々の立場では、多くのMAS LLMは、自律性、社会的相互作用、構造化環境といったマルチエージェントの特徴を欠いている。
我々は、誤字や機会の欠如を避けるため、確立されたMAS概念のより良い統合とより正確な用語を提唱する。
- 参考スコア(独自算出の注目度): 13.615475161647769
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent interest in Multi-Agent Systems of Large Language Models (MAS LLMs) has led to an increase in frameworks leveraging multiple LLMs to tackle complex tasks. However, much of this literature appropriates the terminology of MAS without engaging with its foundational principles. In this position paper, we highlight critical discrepancies between MAS theory and current MAS LLMs implementations, focusing on four key areas: the social aspect of agency, environment design, coordination and communication protocols, and measuring emergent behaviours. Our position is that many MAS LLMs lack multi-agent characteristics such as autonomy, social interaction, and structured environments, and often rely on oversimplified, LLM-centric architectures. The field may slow down and lose traction by revisiting problems the MAS literature has already addressed. Therefore, we systematically analyse this issue and outline associated research opportunities; we advocate for better integrating established MAS concepts and more precise terminology to avoid mischaracterisation and missed opportunities.
- Abstract(参考訳): 近年、MAS LLM(Multi-Agent Systems of Large Language Models)への関心が高まっている。
しかし、この文献の多くは、基礎原理に関わらず、MASの用語に適合している。
本稿では,MAS理論と現在のMAS LLM実装の重大な相違点に注目し,エージェントの社会的側面,環境設計,協調・通信プロトコル,創発的行動の測定という4つの重要な領域に注目した。
我々の立場では、多くのMAS LLMは自律性、社会的相互作用、構造化環境といったマルチエージェントの特徴を欠いており、過度に単純化されたLLM中心のアーキテクチャに依存していることが多い。
この分野は、MASの文献が既に解決している問題を再考することによって、減速し、牽引力を失う可能性がある。
そこで我々は、この問題を体系的に分析し、関連する研究機会を概説し、確立されたMAS概念とより正確な用語をよりよく統合し、誤文字化を回避し、機会を逃すことを提唱する。
関連論文リスト
- A Call for New Recipes to Enhance Spatial Reasoning in MLLMs [85.67171333213301]
MLLM(Multimodal Large Language Models)は、一般的な視覚言語タスクにおいて印象的な性能を示す。
近年の研究では、空間的推論能力の限界が明らかにされている。
この空間的推論の欠如は、MLLMが物理的世界と効果的に相互作用する能力を著しく制限する。
論文 参考訳(メタデータ) (2025-04-21T11:48:39Z) - When One LLM Drools, Multi-LLM Collaboration Rules [98.71562711695991]
私たちは、データ、スキル、人々の幅広い多様性を表現するために、マルチLLMコラボレーションを議論しています。
既存のマルチLLM協調手法を,アクセスレベルと情報交換レベルに基づいて階層構造に整理する。
コンポジションインテリジェンスとコラボレーティブAI開発への不可欠な道として,マルチLLMコラボレーションを構想する。
論文 参考訳(メタデータ) (2025-02-06T21:13:44Z) - VERUS-LM: a Versatile Framework for Combining LLMs with Symbolic Reasoning [8.867818326729367]
本稿では,ニューロシンボリック推論の新しい枠組みであるVERUS-LMを紹介する。
VERUS-LMは汎用的なプロンプト機構を採用し、クエリからドメイン知識を明確に分離する。
提案手法は,LLMを著しく上回る,新しいデータセットの多種多様な推論に成功していることを示す。
論文 参考訳(メタデータ) (2025-01-24T14:45:21Z) - Benchmarking Large and Small MLLMs [71.78055760441256]
大規模なマルチモーダル言語モデル(MLLM)は、マルチモーダルコンテンツの理解と生成において顕著な進歩を遂げている。
しかし、そのデプロイメントは、遅い推論、高い計算コスト、デバイス上のアプリケーションに対する非現実性など、重大な課題に直面している。
LLavaシリーズモデルとPhi-3-Visionによって実証された小さなMLLMは、より高速な推論、デプロイメントコストの削減、ドメイン固有のシナリオを扱う能力を備えた有望な代替手段を提供する。
論文 参考訳(メタデータ) (2025-01-04T07:44:49Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - LLM-based Multi-Agent Reinforcement Learning: Current and Future Directions [8.55917897789612]
我々は、共通の目標を持つ複数のエージェントの協調作業と、それら間のコミュニケーションに焦点を当てる。
また、フレームワークの言語コンポーネントによって実現されるヒューマン・イン・オン・ザ・ループのシナリオについても検討する。
論文 参考訳(メタデータ) (2024-05-17T22:10:23Z) - Unbridled Icarus: A Survey of the Potential Perils of Image Inputs in Multimodal Large Language Model Security [5.077261736366414]
強力なMLLMのような信頼性の高いAIシステムの追求は、現代研究の重要な領域として現れている。
本稿では,画像モダリティのMLLMへの導入に伴う多面的リスクの軽減に努める。
論文 参考訳(メタデータ) (2024-04-08T07:54:18Z) - Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey [100.24095818099522]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野を著しく進歩させた。
広範囲のアプリケーションに対して、非常に有用でタスクに依存しない基盤を提供する。
しかし、特定の領域における洗練された問題を解決するために直接LLMを適用することは、多くのハードルを満たす。
論文 参考訳(メタデータ) (2023-05-30T03:00:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。