A Structured Unplugged Approach for Foundational AI Literacy in Primary Education
- URL: http://arxiv.org/abs/2505.21398v1
- Date: Tue, 27 May 2025 16:23:57 GMT
- Title: A Structured Unplugged Approach for Foundational AI Literacy in Primary Education
- Authors: Maria Cristina Carrisi, Mirko Marras, Sara Vergallo,
- Abstract summary: We propose a structured teaching approach that fosters foundational AI literacy in primary students.<n>Our results indicate improvements in terminology understanding and usage, features description, logical reasoning, and evaluative skills.<n>The approach proved engaging, with students particularly enjoying activities that linked AI concepts to real-world reasoning.
- Score: 7.495145157323768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Younger generations are growing up in a world increasingly shaped by intelligent technologies, making early AI literacy crucial for developing the skills to critically understand and navigate them. However, education in this field often emphasizes tool-based learning, prioritizing usage over understanding the underlying concepts. This lack of knowledge leaves non-experts, especially children, prone to misconceptions, unrealistic expectations, and difficulties in recognizing biases and stereotypes. In this paper, we propose a structured and replicable teaching approach that fosters foundational AI literacy in primary students, by building upon core mathematical elements closely connected to and of interest in primary curricula, to strengthen conceptualization, data representation, classification reasoning, and evaluation of AI. To assess the effectiveness of our approach, we conducted an empirical study with thirty-one fifth-grade students across two classes, evaluating their progress through a post-test and a satisfaction survey. Our results indicate improvements in terminology understanding and usage, features description, logical reasoning, and evaluative skills, with students showing a deeper comprehension of decision-making processes and their limitations. Moreover, the approach proved engaging, with students particularly enjoying activities that linked AI concepts to real-world reasoning. Materials: https://github.com/tail-unica/ai-literacy-primary-ed.
Related papers
- AI-Educational Development Loop (AI-EDL): A Conceptual Framework to Bridge AI Capabilities with Classical Educational Theories [8.500617875591633]
This study introduces the AI-Educational Development Loop (AI-EDL), a theory-driven framework that integrates classical learning theories with human-in-the-loop artificial intelligence (AI)<n>The framework emphasizes transparency, self-regulated learning, and pedagogical oversight.
arXiv Detail & Related papers (2025-08-01T15:44:19Z) - AI Literacy as a Key Driver of User Experience in AI-Powered Assessment: Insights from Socratic Mind [2.0272430076690027]
This study examines how students' AI literacy and prior exposure to AI technologies shape their perceptions of Socratic Mind.<n>Data from 309 undergraduates in Computer Science and Business courses were collected.
arXiv Detail & Related papers (2025-07-29T10:11:24Z) - Unveiling the Learning Mind of Language Models: A Cognitive Framework and Empirical Study [50.065744358362345]
Large language models (LLMs) have shown impressive capabilities across tasks such as mathematics, coding, and reasoning.<n>Yet their learning ability, which is crucial for adapting to dynamic environments and acquiring new knowledge, remains underexplored.
arXiv Detail & Related papers (2025-06-16T13:24:50Z) - Innovative Tangible Interactive Games for Enhancing Artificial Intelligence Knowledge and Literacy in Elementary Education: A Pedagogical Framework [0.0]
This paper presents an innovative framework employing tangible interactive games to enhance artificial intelligence (AI) knowledge and literacy.<n> Recognizing the growing importance of AI competencies in the 21st century, this study addresses the critical need for age-appropriate, experiential learning tools.
arXiv Detail & Related papers (2025-05-31T17:40:30Z) - Form-Substance Discrimination: Concept, Cognition, and Pedagogy [55.2480439325792]
This paper examines form-substance discrimination as an essential learning outcome for curriculum development in higher education.<n>We propose practical strategies for fostering this ability through curriculum design, assessment practices, and explicit instruction.
arXiv Detail & Related papers (2025-04-01T04:15:56Z) - AI Literacy in K-12 and Higher Education in the Wake of Generative AI: An Integrative Review [3.5297361401370044]
There is little consensus among researchers and practitioners on how to discuss and design AI literacy interventions.<n>This paper applies an integrative review method to examine empirical and theoretical AI literacy studies published since 2020.
arXiv Detail & Related papers (2025-02-27T23:32:03Z) - AI in Education: Rationale, Principles, and Instructional Implications [0.0]
Generative AI, like ChatGPT, can create human-like content, prompting questions about its educational role.<n>The study emphasizes deliberate strategies to ensure AI complements, not replaces, genuine cognitive effort.
arXiv Detail & Related papers (2024-12-02T14:08:07Z) - Education in the Era of Neurosymbolic AI [0.6468510459310326]
We propose a system that leverages the unique affordances of pedagogical agents as critical components of a hybrid NAI architecture.
We conclude that education in the era of NAI will make learning more accessible, equitable, and aligned with real-world skills.
arXiv Detail & Related papers (2024-11-16T19:18:39Z) - A Hierarchy-based Analysis Approach for Blended Learning: A Case Study
with Chinese Students [12.533646830917213]
This paper proposes a hierarchy-based evaluation approach for blended learning evaluation.
The results show that cognitive engagement and emotional engagement play a more important role in blended learning evaluation.
arXiv Detail & Related papers (2023-09-19T00:09:00Z) - Causal Reinforcement Learning: A Survey [57.368108154871]
Reinforcement learning is an essential paradigm for solving sequential decision problems under uncertainty.
One of the main obstacles is that reinforcement learning agents lack a fundamental understanding of the world.
Causality offers a notable advantage as it can formalize knowledge in a systematic manner.
arXiv Detail & Related papers (2023-07-04T03:00:43Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z) - A Review on Intelligent Object Perception Methods Combining
Knowledge-based Reasoning and Machine Learning [60.335974351919816]
Object perception is a fundamental sub-field of Computer Vision.
Recent works seek ways to integrate knowledge engineering in order to expand the level of intelligence of the visual interpretation of objects.
arXiv Detail & Related papers (2019-12-26T13:26:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.