A Hierarchy-based Analysis Approach for Blended Learning: A Case Study
with Chinese Students
- URL: http://arxiv.org/abs/2309.10218v1
- Date: Tue, 19 Sep 2023 00:09:00 GMT
- Title: A Hierarchy-based Analysis Approach for Blended Learning: A Case Study
with Chinese Students
- Authors: Yu Ye and Gongjin Zhang and Hongbiao Si and Liang Xu and Shenghua Hu
and Yong Li and Xulong Zhang and Kaiyu Hu and Fangzhou Ye
- Abstract summary: This paper proposes a hierarchy-based evaluation approach for blended learning evaluation.
The results show that cognitive engagement and emotional engagement play a more important role in blended learning evaluation.
- Score: 12.533646830917213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blended learning is generally defined as the combination of traditional
face-to-face learning and online learning. This learning mode has been widely
used in advanced education across the globe due to the COVID-19 pandemic's
social distance restriction as well as the development of technology. Online
learning plays an important role in blended learning, and as it requires more
student autonomy, the quality of blended learning in advanced education has
been a persistent concern. Existing literature offers several elements and
frameworks regarding evaluating the quality of blended learning. However, most
of them either have different favours for evaluation perspectives or simply
offer general guidance for evaluation, reducing the completeness, objectivity
and practicalness of related works. In order to carry out a more intuitive and
comprehensive evaluation framework, this paper proposes a hierarchy-based
analysis approach. Applying gradient boosting model and feature importance
evaluation method, this approach mainly analyses student engagement and its
three identified dimensions (behavioral engagement, emotional engagement,
cognitive engagement) to eliminate some existing stubborn problems when it
comes to blended learning evaluation. The results show that cognitive
engagement and emotional engagement play a more important role in blended
learning evaluation, implying that these two should be considered to improve
for better learning as well as teaching quality.
Related papers
- Unveiling the Role of Expert Guidance: A Comparative Analysis of User-centered Imitation Learning and Traditional Reinforcement Learning [0.0]
This study explores the performance, robustness, and limitations of imitation learning compared to traditional reinforcement learning methods.
The insights gained from this study contribute to the advancement of human-centered artificial intelligence.
arXiv Detail & Related papers (2024-10-28T18:07:44Z) - Exploring Engagement and Perceived Learning Outcomes in an Immersive Flipped Learning Context [0.195804735329484]
The aim of this study was to explore the benefits and challenges of the immersive flipped learning approach in relation to students' online engagement and perceived learning outcomes.
The study revealed high levels of student engagement and perceived learning outcomes, although it also identified areas needing improvement.
The findings of this study can serve as a valuable resource for educators seeking to design engaging and effective remote learning experiences.
arXiv Detail & Related papers (2024-09-19T11:38:48Z) - The Perceived Learning Behaviors and Assessment Techniques of First-Year Students in Computer Science: An Empirical Study [0.0]
Students believe that in-person instruction is the most effective way to learn.
For evaluation methods, there is a preference for practical and written examinations.
arXiv Detail & Related papers (2024-05-10T08:45:32Z) - Evaluating Pedagogical Incentives in Undergraduate Computing: A Mixed Methods Approach Using Learning Analytics [0.0]
This paper assesses the impact of new pedagogical incentives implemented in a first-year undergraduate computing module at University College London.
We employ a mixed methods approach, combining learning analytics with qualitative data to evaluate the effectiveness of these incentives on increasing student engagement.
Our paper introduces an interpretable and actionable model for student engagement, which integrates objective, data-driven analysis with students' perspectives.
arXiv Detail & Related papers (2024-03-13T16:39:38Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
We use Language Models (LMs) as educational experts to assess the impact of various instructions on learning outcomes.
We introduce an instruction optimization approach in which one LM generates instructional materials using the judgments of another LM as a reward function.
Human teachers' evaluations of these LM-generated worksheets show a significant alignment between the LM judgments and human teacher preferences.
arXiv Detail & Related papers (2024-03-05T09:09:15Z) - Evaluating and Improving Continual Learning in Spoken Language
Understanding [58.723320551761525]
We propose an evaluation methodology that provides a unified evaluation on stability, plasticity, and generalizability in continual learning.
By employing the proposed metric, we demonstrate how introducing various knowledge distillations can improve different aspects of these three properties of the SLU model.
arXiv Detail & Related papers (2024-02-16T03:30:27Z) - Causal Reinforcement Learning: A Survey [57.368108154871]
Reinforcement learning is an essential paradigm for solving sequential decision problems under uncertainty.
One of the main obstacles is that reinforcement learning agents lack a fundamental understanding of the world.
Causality offers a notable advantage as it can formalize knowledge in a systematic manner.
arXiv Detail & Related papers (2023-07-04T03:00:43Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
We study a complementary approach which is conceptually simple, general, modular and built on top of recent improvements in off-policy learning.
The framework is inspired by ideas from the probabilistic inference literature and combines robust off-policy learning with a behavior prior.
Our approach achieves competitive adaptation performance on hold-out tasks compared to meta reinforcement learning baselines and can scale to complex sparse-reward scenarios.
arXiv Detail & Related papers (2020-09-10T14:16:58Z) - Dual Policy Distillation [58.43610940026261]
Policy distillation, which transfers a teacher policy to a student policy, has achieved great success in challenging tasks of deep reinforcement learning.
In this work, we introduce dual policy distillation(DPD), a student-student framework in which two learners operate on the same environment to explore different perspectives of the environment.
The key challenge in developing this dual learning framework is to identify the beneficial knowledge from the peer learner for contemporary learning-based reinforcement learning algorithms.
arXiv Detail & Related papers (2020-06-07T06:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.