Autoencoding Random Forests
- URL: http://arxiv.org/abs/2505.21441v1
- Date: Tue, 27 May 2025 17:15:02 GMT
- Title: Autoencoding Random Forests
- Authors: Binh Duc Vu, Jan Kapar, Marvin Wright, David S. Watson,
- Abstract summary: We propose a principled method for autoencoding with random forests.<n>We provide exact and approximate solutions to the decoding problem via constrained optimization, split relabeling, and nearest neighbors regression.<n>We demonstrate various applications of this autoencoder, including powerful new tools for visualization, compression, clustering, and denoising.
- Score: 1.3124513975412255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a principled method for autoencoding with random forests. Our strategy builds on foundational results from nonparametric statistics and spectral graph theory to learn a low-dimensional embedding of the model that optimally represents relationships in the data. We provide exact and approximate solutions to the decoding problem via constrained optimization, split relabeling, and nearest neighbors regression. These methods effectively invert the compression pipeline, establishing a map from the embedding space back to the input space using splits learned by the ensemble's constituent trees. The resulting decoders are universally consistent under common regularity assumptions. The procedure works with supervised or unsupervised models, providing a window into conditional or joint distributions. We demonstrate various applications of this autoencoder, including powerful new tools for visualization, compression, clustering, and denoising. Experiments illustrate the ease and utility of our method in a wide range of settings, including tabular, image, and genomic data.
Related papers
- Efficient compression of neural networks and datasets [0.0]
We compare, improve, and contribute methods that substantially decrease the number of parameters of neural networks.<n>When applying our methods to minimize description length, we obtain very effective data compression algorithms.<n>We empirically verify the prediction that regularized models can exhibit more sample-efficient convergence.
arXiv Detail & Related papers (2025-05-23T04:50:33Z) - Good Things Come in Pairs: Paired Autoencoders for Inverse Problems [0.0]
We focus on the emphpaired autoencoder framework, which has proven to be a powerful tool for solving inverse problems in scientific computing.<n>We illustrate the advantages of this approach through numerical experiments, including seismic imaging and classical inpainting: nonlinear and linear inverse problems.
arXiv Detail & Related papers (2025-05-10T07:31:09Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Learning Saliency From Fixations [0.9208007322096533]
We present a novel approach for saliency prediction in images, leveraging parallel decoding in transformers to learn saliency solely from fixation maps.
Our approach, named Saliency TRansformer (SalTR), achieves metric scores on par with state-of-the-art approaches on the Salicon and MIT300 benchmarks.
arXiv Detail & Related papers (2023-11-23T16:04:41Z) - Symmetric Equilibrium Learning of VAEs [56.56929742714685]
We view variational autoencoders (VAEs) as decoder-encoder pairs, which map distributions in the data space to distributions in the latent space and vice versa.
We propose a Nash equilibrium learning approach, which is symmetric with respect to the encoder and decoder and allows learning VAEs in situations where both the data and the latent distributions are accessible only by sampling.
arXiv Detail & Related papers (2023-07-19T10:27:34Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Flag Aggregator: Scalable Distributed Training under Failures and
Augmented Losses using Convex Optimization [14.732408788010313]
ML applications increasingly rely on complex deep learning models and large datasets.
To scale computation and data, these models are inevitably trained in a distributed manner in clusters of nodes, and their updates are aggregated before being applied to the model.
With data augmentation added to these settings, there is a critical need for robust and efficient aggregation systems.
We show that our approach significantly enhances the robustness of state-of-the-art Byzantine resilient aggregators.
arXiv Detail & Related papers (2023-02-12T06:38:30Z) - Okapi: Generalising Better by Making Statistical Matches Match [7.392460712829188]
Okapi is a simple, efficient, and general method for robust semi-supervised learning based on online statistical matching.
Our method uses a nearest-neighbours-based matching procedure to generate cross-domain views for a consistency loss.
We show that it is in fact possible to leverage additional unlabelled data to improve upon empirical risk minimisation.
arXiv Detail & Related papers (2022-11-07T12:41:17Z) - Dataset Condensation with Latent Space Knowledge Factorization and
Sharing [73.31614936678571]
We introduce a novel approach for solving dataset condensation problem by exploiting the regularity in a given dataset.
Instead of condensing the dataset directly in the original input space, we assume a generative process of the dataset with a set of learnable codes.
We experimentally show that our method achieves new state-of-the-art records by significant margins on various benchmark datasets.
arXiv Detail & Related papers (2022-08-21T18:14:08Z) - Unfolding Neural Networks for Compressive Multichannel Blind
Deconvolution [71.29848468762789]
We propose a learned-structured unfolding neural network for the problem of compressive sparse multichannel blind-deconvolution.
In this problem, each channel's measurements are given as convolution of a common source signal and sparse filter.
We demonstrate that our method is superior to classical structured compressive sparse multichannel blind-deconvolution methods in terms of accuracy and speed of sparse filter recovery.
arXiv Detail & Related papers (2020-10-22T02:34:33Z) - Distributed Sketching Methods for Privacy Preserving Regression [54.51566432934556]
We leverage randomized sketches for reducing the problem dimensions as well as preserving privacy and improving straggler resilience in asynchronous distributed systems.
We derive novel approximation guarantees for classical sketching methods and analyze the accuracy of parameter averaging for distributed sketches.
We illustrate the performance of distributed sketches in a serverless computing platform with large scale experiments.
arXiv Detail & Related papers (2020-02-16T08:35:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.