SkyReels-Audio: Omni Audio-Conditioned Talking Portraits in Video Diffusion Transformers
- URL: http://arxiv.org/abs/2506.00830v1
- Date: Sun, 01 Jun 2025 04:27:13 GMT
- Title: SkyReels-Audio: Omni Audio-Conditioned Talking Portraits in Video Diffusion Transformers
- Authors: Zhengcong Fei, Hao Jiang, Di Qiu, Baoxuan Gu, Youqiang Zhang, Jiahua Wang, Jialin Bai, Debang Li, Mingyuan Fan, Guibin Chen, Yahui Zhou,
- Abstract summary: We present SkyReels-Audio, a unified framework for synthesizing high-fidelity and temporally coherent talking portrait videos.<n>Our framework supports infinite-length generation and editing, while enabling diverse and controllable conditioning through multimodal inputs.
- Score: 25.36460340267922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The generation and editing of audio-conditioned talking portraits guided by multimodal inputs, including text, images, and videos, remains under explored. In this paper, we present SkyReels-Audio, a unified framework for synthesizing high-fidelity and temporally coherent talking portrait videos. Built upon pretrained video diffusion transformers, our framework supports infinite-length generation and editing, while enabling diverse and controllable conditioning through multimodal inputs. We employ a hybrid curriculum learning strategy to progressively align audio with facial motion, enabling fine-grained multimodal control over long video sequences. To enhance local facial coherence, we introduce a facial mask loss and an audio-guided classifier-free guidance mechanism. A sliding-window denoising approach further fuses latent representations across temporal segments, ensuring visual fidelity and temporal consistency across extended durations and diverse identities. More importantly, we construct a dedicated data pipeline for curating high-quality triplets consisting of synchronized audio, video, and textual descriptions. Comprehensive benchmark evaluations show that SkyReels-Audio achieves superior performance in lip-sync accuracy, identity consistency, and realistic facial dynamics, particularly under complex and challenging conditions.
Related papers
- Audio-Sync Video Generation with Multi-Stream Temporal Control [64.00019697525322]
We introduce MTV, a versatile framework for video generation with precise audio-visual synchronization.<n>MTV separates audios into speech, effects, and tracks, enabling control over lip motion, event timing, and visual mood.<n>To support the framework, we additionally present DEmix, a dataset of high-quality cinematic videos and demixed audio tracks.
arXiv Detail & Related papers (2025-06-09T17:59:42Z) - OmniSync: Towards Universal Lip Synchronization via Diffusion Transformers [13.623360048766603]
We present OmniSync, a universal lip synchronization framework for diverse visual scenarios.<n>Our approach introduces a mask-free training paradigm using Diffusion Transformer models for direct frame editing without explicit masks.<n>We also establish the AIGCLipSync Benchmark, the first evaluation suite for lip sync in AI-generated videos.
arXiv Detail & Related papers (2025-05-27T17:20:38Z) - OmniTalker: One-shot Real-time Text-Driven Talking Audio-Video Generation With Multimodal Style Mimicking [22.337906095079198]
We present OmniTalker, a unified framework that jointly generates synchronized talking audio-video content from input text.<n>Our framework adopts a dual-branch diffusion transformer (DiT) architecture, with one branch dedicated to audio generation and the other to video synthesis.
arXiv Detail & Related papers (2025-04-03T09:48:13Z) - SayAnything: Audio-Driven Lip Synchronization with Conditional Video Diffusion [78.77211425667542]
SayAnything is a conditional video diffusion framework that directly synthesizes lip movements from audio input.<n>Our novel design effectively balances different condition signals in the latent space, enabling precise control over appearance, motion, and region-specific generation.
arXiv Detail & Related papers (2025-02-17T07:29:36Z) - MEMO: Memory-Guided Diffusion for Expressive Talking Video Generation [55.95148886437854]
Memory-guided EMOtion-aware diffusion (MEMO) is an end-to-end audio-driven portrait animation approach to generate talking videos.<n>MEMO generates more realistic talking videos across diverse image and audio types, outperforming state-of-the-art methods in overall quality, audio-lip synchronization, identity consistency, and expression-emotion alignment.
arXiv Detail & Related papers (2024-12-05T18:57:26Z) - LetsTalk: Latent Diffusion Transformer for Talking Video Synthesis [38.08071302910815]
LetsTalk is a diffusion transformer that incorporates modular temporal and spatial attention mechanisms to merge multimodality and enhance spatial-temporal consistency.
We propose a suitable solution according to the modality differences of image, audio, and video generation.
Our experiments demonstrate that our approach generates temporally coherent and realistic videos with enhanced diversity and liveliness.
arXiv Detail & Related papers (2024-11-24T04:46:00Z) - ReSyncer: Rewiring Style-based Generator for Unified Audio-Visually Synced Facial Performer [87.32518573172631]
ReSyncer fuses motion and appearance with unified training.
It supports fast personalized fine-tuning, video-driven lip-syncing, the transfer of speaking styles, and even face swapping.
arXiv Detail & Related papers (2024-08-06T16:31:45Z) - Hallo: Hierarchical Audio-Driven Visual Synthesis for Portrait Image Animation [29.87407471246318]
This research delves into the complexities of synchronizing facial movements and creating visually appealing, temporally consistent animations.
Our innovative approach embraces the end-to-end diffusion paradigm and introduces a hierarchical audio-driven visual synthesis module.
The proposed hierarchical audio-driven visual synthesis offers adaptive control over expression and pose diversity, enabling more effective personalization tailored to different identities.
arXiv Detail & Related papers (2024-06-13T04:33:20Z) - FaceChain-ImagineID: Freely Crafting High-Fidelity Diverse Talking Faces from Disentangled Audio [45.71036380866305]
We abstract the process of people hearing speech, extracting meaningful cues, and creating dynamically audio-consistent talking faces from a single audio.
Specifically, it involves two critical challenges: one is to effectively decouple identity, content, and emotion from entangled audio, and the other is to maintain intra-video diversity and inter-video consistency.
We introduce the Controllable Coherent Frame generation, which involves the flexible integration of three trainable adapters with frozen Latent Diffusion Models.
arXiv Detail & Related papers (2024-03-04T09:59:48Z) - Mirasol3B: A Multimodal Autoregressive model for time-aligned and contextual modalities [67.89368528234394]
One of the main challenges of multimodal learning is the need to combine heterogeneous modalities.
Video and audio are obtained at much higher rates than text and are roughly aligned in time.
Our approach achieves the state-of-the-art on well established multimodal benchmarks, outperforming much larger models.
arXiv Detail & Related papers (2023-11-09T19:15:12Z) - Audio-Visual Contrastive Learning with Temporal Self-Supervision [84.11385346896412]
We propose a self-supervised learning approach for videos that learns representations of both the RGB frames and the accompanying audio without human supervision.
To leverage the temporal and aural dimension inherent to videos, our method extends temporal self-supervision to the audio-visual setting.
arXiv Detail & Related papers (2023-02-15T15:00:55Z) - Multi Modal Adaptive Normalization for Audio to Video Generation [18.812696623555855]
We propose a multi-modal adaptive normalization(MAN) based architecture to synthesize a talking person video of arbitrary length using as input: an audio signal and a single image of a person.
The architecture uses the multi-modal adaptive normalization, keypoint heatmap predictor, optical flow predictor and class activation map[58] based layers to learn movements of expressive facial components.
arXiv Detail & Related papers (2020-12-14T07:39:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.