Scaling External Knowledge Input Beyond Context Windows of LLMs via Multi-Agent Collaboration
- URL: http://arxiv.org/abs/2505.21471v1
- Date: Tue, 27 May 2025 17:45:04 GMT
- Title: Scaling External Knowledge Input Beyond Context Windows of LLMs via Multi-Agent Collaboration
- Authors: Zijun Liu, Zhennan Wan, Peng Li, Ming Yan, Ji Zhang, Fei Huang, Yang Liu,
- Abstract summary: Large language models (LLMs) can incorporate a large quantity of retrieved knowledge to solve complex tasks.<n>Existing context window extension methods inevitably cause information loss.<n>We develop a multi-agent framework, $textbfExtAgents$, to overcome the bottlenecks.
- Score: 38.63721941742435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid advancement of post-training techniques for reasoning and information seeking, large language models (LLMs) can incorporate a large quantity of retrieved knowledge to solve complex tasks. However, the limited context window of LLMs obstructs scaling the amount of external knowledge input, prohibiting further improvement, especially for tasks requiring significant amount of external knowledge. Existing context window extension methods inevitably cause information loss. LLM-based multi-agent methods emerge as a new paradigm to handle massive input in a distributional manner, where we identify two core bottlenecks in existing knowledge synchronization and reasoning processes. In this work, we develop a multi-agent framework, $\textbf{ExtAgents}$, to overcome the bottlenecks and enable better scalability in inference-time knowledge integration without longer-context training. Benchmarked with our enhanced multi-hop question answering test, $\textbf{$\boldsymbol{\infty}$Bench+}$, and other public test sets including long survey generation, ExtAgents significantly enhances the performance over existing non-training methods with the same amount of external knowledge input, regardless of whether it falls $\textit{within or exceeds the context window}$. Moreover, the method maintains high efficiency due to high parallelism. Further study in the coordination of LLM agents on increasing external knowledge input could benefit real-world applications.
Related papers
- KnowTrace: Bootstrapping Iterative Retrieval-Augmented Generation with Structured Knowledge Tracing [64.38243807002878]
We present KnowTrace, an elegant RAG framework to mitigate the context overload in large language models.<n>KnowTrace autonomously traces out desired knowledge triplets to organize a specific knowledge graph relevant to the input question.<n>It consistently surpasses existing methods across three multi-hop question answering benchmarks.
arXiv Detail & Related papers (2025-05-26T17:22:20Z) - Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - O$^2$-Searcher: A Searching-based Agent Model for Open-Domain Open-Ended Question Answering [31.38063794496179]
O$2$-Searcher is a novel search agent leveraging reinforcement learning to tackle both open-ended and closed-ended questions in the open domain.<n>It employs a unified training mechanism with meticulously designed reward functions, enabling the agent to identify problem types and adapt different answer generation strategies.<n>Extensive experiments show that O$2$-Searcher, using only a 3B model, significantly surpasses leading LLM agents on O$2$-QA.
arXiv Detail & Related papers (2025-05-22T12:17:13Z) - Knowledge-Aware Iterative Retrieval for Multi-Agent Systems [0.0]
We introduce a novel large language model (LLM)-driven agent framework.<n>It iteratively refines queries and filters contextual evidence by leveraging dynamically evolving knowledge.<n>The proposed system supports both competitive and collaborative sharing of updated context.
arXiv Detail & Related papers (2025-03-17T15:27:02Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - Parametric Retrieval Augmented Generation [32.29608109539912]
Parametric RAG is a new RAG paradigm that integrates external knowledge directly into the parameters of feed-forward networks.<n>It substantially enhances both the effectiveness and efficiency of knowledge augmentation in large language models.
arXiv Detail & Related papers (2025-01-27T10:04:49Z) - Augmenting Multimodal LLMs with Self-Reflective Tokens for Knowledge-based Visual Question Answering [44.008094698200026]
We introduce a novel method to enhance the adaptability of MLLMs by integrating external knowledge sources.<n>Our proposed model, Reflective LLaVA (ReflectiVA), utilizes reflective tokens to dynamically determine the need for external knowledge.<n>This ultimately enables the MLLM to manage external knowledge while preserving fluency and performance on tasks where external knowledge is not needed.
arXiv Detail & Related papers (2024-11-25T19:01:03Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input.<n>GIVE guides the LLM agent to select the most pertinent expert data (observe), engage in query-specific divergent thinking (reflect), and then synthesize this information to produce the final output (speak)
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - Rethinking with Retrieval: Faithful Large Language Model Inference [91.66406351103484]
We propose a novel post-processing approach, rethinking with retrieval (RR)
RR retrieves relevant external knowledge based on the reasoning steps obtained from the chain-of-thought prompting.
We evaluate the effectiveness of RR through extensive experiments with GPT-3 on three complex reasoning tasks.
arXiv Detail & Related papers (2022-12-31T22:35:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.