MV-CoLight: Efficient Object Compositing with Consistent Lighting and Shadow Generation
- URL: http://arxiv.org/abs/2505.21483v1
- Date: Tue, 27 May 2025 17:53:02 GMT
- Title: MV-CoLight: Efficient Object Compositing with Consistent Lighting and Shadow Generation
- Authors: Kerui Ren, Jiayang Bai, Linning Xu, Lihan Jiang, Jiangmiao Pang, Mulin Yu, Bo Dai,
- Abstract summary: MV-CoLight is a framework for illumination-consistent object compositing in 2D and 3D scenes.<n>We employ a Hilbert curve-based mapping to align 2D image inputs with 3D Gaussian scene representations seamlessly.<n> Experiments demonstrate state-of-the-art harmonized results across standard benchmarks and our dataset.
- Score: 19.46962637673285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object compositing offers significant promise for augmented reality (AR) and embodied intelligence applications. Existing approaches predominantly focus on single-image scenarios or intrinsic decomposition techniques, facing challenges with multi-view consistency, complex scenes, and diverse lighting conditions. Recent inverse rendering advancements, such as 3D Gaussian and diffusion-based methods, have enhanced consistency but are limited by scalability, heavy data requirements, or prolonged reconstruction time per scene. To broaden its applicability, we introduce MV-CoLight, a two-stage framework for illumination-consistent object compositing in both 2D images and 3D scenes. Our novel feed-forward architecture models lighting and shadows directly, avoiding the iterative biases of diffusion-based methods. We employ a Hilbert curve-based mapping to align 2D image inputs with 3D Gaussian scene representations seamlessly. To facilitate training and evaluation, we further introduce a large-scale 3D compositing dataset. Experiments demonstrate state-of-the-art harmonized results across standard benchmarks and our dataset, as well as casually captured real-world scenes demonstrate the framework's robustness and wide generalization.
Related papers
- Generalizable and Relightable Gaussian Splatting for Human Novel View Synthesis [49.67420486373202]
GRGS is a generalizable and relightable 3D Gaussian framework for high-fidelity human novel view synthesis under diverse lighting conditions.<n>We introduce a Lighting-aware Geometry Refinement (LGR) module trained on synthetically relit data to predict accurate depth and surface normals.
arXiv Detail & Related papers (2025-05-27T17:59:47Z) - SpatialCrafter: Unleashing the Imagination of Video Diffusion Models for Scene Reconstruction from Limited Observations [42.69229582451846]
This work takes on the challenge of reconstructing 3D scenes from sparse or single-view inputs.<n>We introduce SpatialCrafter, a framework that leverages the rich knowledge in video diffusion models to generate plausible additional observations.<n>Through a trainable camera encoder and an epipolar attention mechanism for explicit geometric constraints, we achieve precise camera control and 3D consistency.
arXiv Detail & Related papers (2025-05-17T13:05:13Z) - EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization.<n>We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner.
arXiv Detail & Related papers (2025-03-26T02:47:27Z) - IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illuminations [64.07859467542664]
Capturing geometric and material information from images remains a fundamental challenge in computer vision and graphics.<n>Traditional optimization-based methods often require hours of computational time to reconstruct geometry, material properties, and environmental lighting from dense multi-view inputs.<n>We introduce IDArb, a diffusion-based model designed to perform intrinsic decomposition on an arbitrary number of images under varying illuminations.
arXiv Detail & Related papers (2024-12-16T18:52:56Z) - HybridGS: Decoupling Transients and Statics with 2D and 3D Gaussian Splatting [47.67153284714988]
We propose a novel hybrid representation, termed as HybridGS, using 2D Gaussians for transient objects per image.<n>We also propose a straightforward yet effective multi-stage training strategy to ensure robust training and high-quality view synthesis.<n> Experiments on benchmark datasets show our state-of-the-art performance of novel view synthesis in both indoor and outdoor scenes.
arXiv Detail & Related papers (2024-12-05T03:20:35Z) - BIFRÖST: 3D-Aware Image compositing with Language Instructions [27.484947109237964]
Bifr"ost is a novel 3D-aware framework that is built upon diffusion models to perform instruction-based image composition.
Bifr"ost addresses issues by training MLLM as a 2.5D location predictor and integrating depth maps as an extra condition during the generation process.
arXiv Detail & Related papers (2024-10-24T18:35:12Z) - MetaGS: A Meta-Learned Gaussian-Phong Model for Out-of-Distribution 3D Scene Relighting [63.5925701087252]
Out-of-distribution (OOD) 3D relighting requires novel view synthesis under unseen lighting conditions.<n>We introduce MetaGS to tackle this challenge from two perspectives.
arXiv Detail & Related papers (2024-05-31T13:48:54Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
We introduce GeoGS3D, a framework for reconstructing detailed 3D objects from single-view images.
We propose a novel metric, Gaussian Divergence Significance (GDS), to prune unnecessary operations during optimization.
Experiments demonstrate that GeoGS3D generates images with high consistency across views and reconstructs high-quality 3D objects.
arXiv Detail & Related papers (2024-03-15T12:24:36Z) - Light Field Diffusion for Single-View Novel View Synthesis [32.59286750410843]
Single-view novel view synthesis (NVS) is important but challenging in computer vision.
Recent advancements in NVS have leveraged Denoising Diffusion Probabilistic Models (DDPMs) for their exceptional ability to produce high-fidelity images.
We present Light Field Diffusion (LFD), a novel conditional diffusion-based approach that transcends the conventional reliance on camera pose matrices.
arXiv Detail & Related papers (2023-09-20T03:27:06Z) - IT3D: Improved Text-to-3D Generation with Explicit View Synthesis [71.68595192524843]
This study presents a novel strategy that leverages explicitly synthesized multi-view images to address these issues.
Our approach involves the utilization of image-to-image pipelines, empowered by LDMs, to generate posed high-quality images.
For the incorporated discriminator, the synthesized multi-view images are considered real data, while the renderings of the optimized 3D models function as fake data.
arXiv Detail & Related papers (2023-08-22T14:39:17Z) - Spatiotemporally Consistent HDR Indoor Lighting Estimation [66.26786775252592]
We propose a physically-motivated deep learning framework to solve the indoor lighting estimation problem.
Given a single LDR image with a depth map, our method predicts spatially consistent lighting at any given image position.
Our framework achieves photorealistic lighting prediction with higher quality compared to state-of-the-art single-image or video-based methods.
arXiv Detail & Related papers (2023-05-07T20:36:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.