MetaGS: A Meta-Learned Gaussian-Phong Model for Out-of-Distribution 3D Scene Relighting
- URL: http://arxiv.org/abs/2405.20791v2
- Date: Tue, 27 May 2025 12:43:12 GMT
- Title: MetaGS: A Meta-Learned Gaussian-Phong Model for Out-of-Distribution 3D Scene Relighting
- Authors: Yumeng He, Yunbo Wang, Xiaokang Yang,
- Abstract summary: Out-of-distribution (OOD) 3D relighting requires novel view synthesis under unseen lighting conditions.<n>We introduce MetaGS to tackle this challenge from two perspectives.
- Score: 63.5925701087252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-distribution (OOD) 3D relighting requires novel view synthesis under unseen lighting conditions that differ significantly from the observed images. Existing relighting methods, which assume consistent light source distributions between training and testing, often degrade in OOD scenarios. We introduce MetaGS to tackle this challenge from two perspectives. First, we propose a meta-learning approach to train 3D Gaussian splatting, which explicitly promotes learning generalizable Gaussian geometries and appearance attributes across diverse lighting conditions, even with biased training data. Second, we embed fundamental physical priors from the Blinn-Phong reflection model into Gaussian splatting, which enhances the decoupling of shading components and leads to more accurate 3D scene reconstruction. Results on both synthetic and real-world datasets demonstrate the effectiveness of MetaGS in challenging OOD relighting tasks, supporting efficient point-light relighting and generalizing well to unseen environment lighting maps.
Related papers
- Generalizable and Relightable Gaussian Splatting for Human Novel View Synthesis [49.67420486373202]
GRGS is a generalizable and relightable 3D Gaussian framework for high-fidelity human novel view synthesis under diverse lighting conditions.<n>We introduce a Lighting-aware Geometry Refinement (LGR) module trained on synthetically relit data to predict accurate depth and surface normals.
arXiv Detail & Related papers (2025-05-27T17:59:47Z) - MV-CoLight: Efficient Object Compositing with Consistent Lighting and Shadow Generation [19.46962637673285]
MV-CoLight is a framework for illumination-consistent object compositing in 2D and 3D scenes.<n>We employ a Hilbert curve-based mapping to align 2D image inputs with 3D Gaussian scene representations seamlessly.<n> Experiments demonstrate state-of-the-art harmonized results across standard benchmarks and our dataset.
arXiv Detail & Related papers (2025-05-27T17:53:02Z) - Metamon-GS: Enhancing Representability with Variance-Guided Densification and Light Encoding [9.703262855661064]
3D Gaussian Splatting (3DGS) has advanced novel view synthesis by utilizing Gaussians to represent scenes.<n>While significant advances have been made, it is still challenging to boost rendering performance.<n>We propose Metamon-GS, from innovative viewpoints of variance-guided densification strategy and multi-level hash grid.
arXiv Detail & Related papers (2025-04-20T02:44:39Z) - GeoSplatting: Towards Geometry Guided Gaussian Splatting for Physically-based Inverse Rendering [69.67264955234494]
GeoSplatting is a novel approach that augments 3DGS with explicit geometry guidance for precise light transport modeling.<n>By differentiably constructing a surface-grounded 3DGS from an optimizable mesh, our approach leverages well-defined mesh normals and the opaque mesh surface.<n>This enhancement ensures precise material decomposition while preserving the efficiency and high-quality rendering capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-31T17:57:07Z) - GI-GS: Global Illumination Decomposition on Gaussian Splatting for Inverse Rendering [6.820642721852439]
We present GI-GS, a novel inverse rendering framework that leverages 3D Gaussian Splatting (3DGS) and deferred shading.
In our framework, we first render a G-buffer to capture the detailed geometry and material properties of the scene.
With the G-buffer and previous rendering results, the indirect lighting can be calculated through a lightweight path tracing.
arXiv Detail & Related papers (2024-10-03T15:58:18Z) - Subsurface Scattering for 3D Gaussian Splatting [10.990813043493642]
3D reconstruction and relighting of objects made from scattering materials present a significant challenge due to the complex light transport beneath the surface.
We propose a framework for optimizing an object's shape together with the radiance transfer field given multi-view OLAT (one light at a time) data.
Our approach enables material editing, relighting and novel view synthesis at interactive rates.
arXiv Detail & Related papers (2024-08-22T10:34:01Z) - DeferredGS: Decoupled and Editable Gaussian Splatting with Deferred Shading [50.331929164207324]
We introduce DeferredGS, a method for decoupling and editing the Gaussian splatting representation using deferred shading.
Both qualitative and quantitative experiments demonstrate the superior performance of DeferredGS in novel view and editing tasks.
arXiv Detail & Related papers (2024-04-15T01:58:54Z) - GIR: 3D Gaussian Inverse Rendering for Relightable Scene Factorization [62.13932669494098]
This paper presents a 3D Gaussian Inverse Rendering (GIR) method, employing 3D Gaussian representations to factorize the scene into material properties, light, and geometry.
We compute the normal of each 3D Gaussian using the shortest eigenvector, with a directional masking scheme forcing accurate normal estimation without external supervision.
We adopt an efficient voxel-based indirect illumination tracing scheme that stores direction-aware outgoing radiance in each 3D Gaussian to disentangle secondary illumination for approximating multi-bounce light transport.
arXiv Detail & Related papers (2023-12-08T16:05:15Z) - Relightable 3D Gaussians: Realistic Point Cloud Relighting with BRDF Decomposition and Ray Tracing [21.498078188364566]
We present a novel differentiable point-based rendering framework to achieve photo-realistic relighting.
The proposed framework showcases the potential to revolutionize the mesh-based graphics pipeline with a point-based pipeline enabling editing, tracing, and relighting.
arXiv Detail & Related papers (2023-11-27T18:07:58Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
We propose GS-IR, a novel inverse rendering approach based on 3D Gaussian Splatting (GS)
We extend GS, a top-performance representation for novel view synthesis, to estimate scene geometry, surface material, and environment illumination from multi-view images captured under unknown lighting conditions.
The flexible and expressive GS representation allows us to achieve fast and compact geometry reconstruction, photorealistic novel view synthesis, and effective physically-based rendering.
arXiv Detail & Related papers (2023-11-26T02:35:09Z) - Physics-based Indirect Illumination for Inverse Rendering [70.27534648770057]
We present a physics-based inverse rendering method that learns the illumination, geometry, and materials of a scene from posed multi-view RGB images.
As a side product, our physics-based inverse rendering model also facilitates flexible and realistic material editing as well as relighting.
arXiv Detail & Related papers (2022-12-09T07:33:49Z) - Neural Radiance Transfer Fields for Relightable Novel-view Synthesis
with Global Illumination [63.992213016011235]
We propose a method for scene relighting under novel views by learning a neural precomputed radiance transfer function.
Our method can be solely supervised on a set of real images of the scene under a single unknown lighting condition.
Results show that the recovered disentanglement of scene parameters improves significantly over the current state of the art.
arXiv Detail & Related papers (2022-07-27T16:07:48Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
We present an efficient method for joint optimization of materials and lighting from multi-view image observations.
We leverage meshes with spatially-varying materials and environment that can be deployed in any traditional graphics engine.
arXiv Detail & Related papers (2021-11-24T13:58:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.