論文の概要: Knowledge Distillation Approach for SOS Fusion Staging: Towards Fully Automated Skeletal Maturity Assessment
- arxiv url: http://arxiv.org/abs/2505.21561v1
- Date: Tue, 27 May 2025 02:01:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:50.162674
- Title: Knowledge Distillation Approach for SOS Fusion Staging: Towards Fully Automated Skeletal Maturity Assessment
- Title(参考訳): SOS核融合安定化のための知識蒸留アプローチ:完全自動骨格成熟度評価に向けて
- Authors: Omid Halimi Milani, Amanda Nikho, Marouane Tliba, Lauren Mills, Ahmet Enis Cetin, Mohammed H Elnagar,
- Abstract要約: 本稿では,SOS(spheno-occipital synchondrosis)核融合の自動ステージングのための新しいディープラーニングフレームワークを提案する。
本フレームワークは診断精度が向上し,臨床的に実現可能なエンド・ツー・エンド・パイプラインが完成する。
- 参考スコア(独自算出の注目度): 1.0208529247755187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel deep learning framework for the automated staging of spheno-occipital synchondrosis (SOS) fusion, a critical diagnostic marker in both orthodontics and forensic anthropology. Our approach leverages a dual-model architecture wherein a teacher model, trained on manually cropped images, transfers its precise spatial understanding to a student model that operates on full, uncropped images. This knowledge distillation is facilitated by a newly formulated loss function that aligns spatial logits as well as incorporates gradient-based attention spatial mapping, ensuring that the student model internalizes the anatomically relevant features without relying on external cropping or YOLO-based segmentation. By leveraging expert-curated data and feedback at each step, our framework attains robust diagnostic accuracy, culminating in a clinically viable end-to-end pipeline. This streamlined approach obviates the need for additional pre-processing tools and accelerates deployment, thereby enhancing both the efficiency and consistency of skeletal maturation assessment in diverse clinical settings.
- Abstract(参考訳): 矯正学と法科学人類学の両分野において重要な診断マーカーであるSOS(Spheno-occipital synchondrosis)融合の自動化のための新しいディープラーニングフレームワークを提案する。
提案手法では,手作業によるトリミング画像に基づいて訓練された教師モデルを用いて,その正確な空間的理解を,フルクロップ画像で動作する学生モデルに伝達する。
この知識蒸留は、空間ロジットを整列させるとともに、勾配に基づく空間マッピングを取り入れ、外部の収穫やYOLOベースのセグメンテーションに頼ることなく、学生モデルが解剖学的に関連した特徴を内在化することを保証する、新たに構成された損失関数によって促進される。
各ステップで専門家によって算出されたデータとフィードバックを活用することで、我々のフレームワークは堅牢な診断精度を達成し、臨床的に実行可能なエンドツーエンドパイプラインに到達します。
この合理化アプローチは、追加の事前処理ツールの必要性を排除し、デプロイを加速し、様々な臨床環境での骨格成熟度評価の効率性と一貫性を向上する。
関連論文リスト
- Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis [16.268045905735818]
病理画像分類に適したコントラスト学習に基づくマルチスケール機能融合モデルであるCMSwinKANを提案する。
マルチスケールの特徴を融合させ、対照的な学習戦略を活用することで、CMSwinKANは臨床医の包括的なアプローチを模倣する。
その結果、CMSwinKANは、既存の最先端の病理モデルよりも、大規模なデータセットで事前訓練されたモデルよりもパフォーマンスがよいことが示された。
論文 参考訳(メタデータ) (2025-04-18T15:39:46Z) - Adversarial Vessel-Unveiling Semi-Supervised Segmentation for Retinopathy of Prematurity Diagnosis [9.683492465191241]
広範囲な手動血管アノテーションを必要とせず,ROP研究を進めるための半教師付きセグメンテーションフレームワークを提案する。
ラベル付きデータにのみ依存する従来の手法とは異なり,本手法では不確実性重み付き容器公開モジュールとドメイン対向学習を統合している。
我々は、パブリックデータセットと社内ROPデータセットに対するアプローチを検証し、複数の評価指標で優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-11-14T02:40:34Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Stain based contrastive co-training for histopathological image analysis [61.87751502143719]
本稿では,ヒストリボリューション画像の分類のための,新しい半教師付き学習手法を提案する。
我々は、半教師付き学習フレームワークを作成するために、パッチレベルのアノテーションと、新しいコトレーニング損失を併用した強力な監視を採用する。
透明細胞腎細胞および前立腺癌に対するアプローチを評価し,最先端の半教師あり学習法の改善を実証した。
論文 参考訳(メタデータ) (2022-06-24T22:25:31Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
内視鏡下粘膜下郭清術における高精度かつリアルタイムなランドマーク検出のための形状認識型関係ネットワークを提案する。
まず,ランドマーク間の空間的関係に関する先行知識を直感的に表現する関係キーポイント・ヒートマップを自動生成するアルゴリズムを考案する。
次に、事前知識を学習プロセスに段階的に組み込むために、2つの補完的な正規化手法を開発する。
論文 参考訳(メタデータ) (2021-11-08T07:57:30Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Learning to Segment Anatomical Structures Accurately from One Exemplar [34.287877547953194]
大量の注釈付きトレーニング画像を用いることなく、正確な解剖学的構造セグメンテーションを作成できる方法は、非常に望ましい。
本研究では,自然に組み込まれたループ機構を備えたワンショット解剖セグメントであるContour Transformer Network (CTN)を提案する。
筆者らのワンショット学習法は,非学習に基づく手法を著しく上回り,最先端の完全教師付きディープラーニングアプローチと競争的に機能することを示した。
論文 参考訳(メタデータ) (2020-07-06T20:27:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。