論文の概要: Adversarial Vessel-Unveiling Semi-Supervised Segmentation for Retinopathy of Prematurity Diagnosis
- arxiv url: http://arxiv.org/abs/2411.09140v1
- Date: Thu, 14 Nov 2024 02:40:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:24:40.028223
- Title: Adversarial Vessel-Unveiling Semi-Supervised Segmentation for Retinopathy of Prematurity Diagnosis
- Title(参考訳): 未熟診断網膜症に対する対側血管開放セミスーパービジョンセグメンテーション
- Authors: Gozde Merve Demirci, Jiachen Yao, Ming-Chih Ho, Xiaoling Hu, Wei-Chi Wu, Chao Chen, Chia-Ling Tsai,
- Abstract要約: 広範囲な手動血管アノテーションを必要とせず,ROP研究を進めるための半教師付きセグメンテーションフレームワークを提案する。
ラベル付きデータにのみ依存する従来の手法とは異なり,本手法では不確実性重み付き容器公開モジュールとドメイン対向学習を統合している。
我々は、パブリックデータセットと社内ROPデータセットに対するアプローチを検証し、複数の評価指標で優れたパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 9.683492465191241
- License:
- Abstract: Accurate segmentation of retinal images plays a crucial role in aiding ophthalmologists in diagnosing retinopathy of prematurity (ROP) and assessing its severity. However, due to their underdeveloped, thinner vessels, manual annotation in infant fundus images is very complex, and this presents challenges for fully supervised learning. To address the scarcity of annotations, we propose a semi supervised segmentation framework designed to advance ROP studies without the need for extensive manual vessel annotation. Unlike previous methods that rely solely on limited labeled data, our approach leverages teacher student learning by integrating two powerful components: an uncertainty weighted vessel unveiling module and domain adversarial learning. The vessel unveiling module helps the model effectively reveal obscured and hard to detect vessel structures, while adversarial training aligns feature representations across different domains, ensuring robust and generalizable vessel segmentations. We validate our approach on public datasets (CHASEDB, STARE) and an in-house ROP dataset, demonstrating its superior performance across multiple evaluation metrics. Additionally, we extend the model's utility to a downstream task of ROP multi-stage classification, where vessel masks extracted by our segmentation model improve diagnostic accuracy. The promising results in classification underscore the model's potential for clinical application, particularly in early-stage ROP diagnosis and intervention. Overall, our work offers a scalable solution for leveraging unlabeled data in pediatric ophthalmology, opening new avenues for biomarker discovery and clinical research.
- Abstract(参考訳): 網膜画像の正確なセグメンテーションは、眼科医が未熟児網膜症(ROP)を診断し、その重症度を評価する上で重要な役割を担っている。
しかし、未発達の細い血管のため、幼児の眼底画像の手動アノテーションは非常に複雑であり、完全な教師あり学習の課題が提示される。
アノテーションの不足に対処するため,手動血管アノテーションを必要とせず,ROP研究を進めるための半教師付きセグメンテーションフレームワークを提案する。
限定ラベル付きデータにのみ依存する従来の手法とは異なり,本手法は教師の学習を2つの強力な要素(不確実な重み付き容器公開モジュールとドメイン逆学習)を統合することで活用する。
船体公開モジュールは、船体構造を効果的に明らかにし難い一方で、敵の訓練は異なる領域にまたがる特徴表現を整列させ、堅牢で一般化可能な船体セグメンテーションを確実にする。
我々は、公開データセット(CHASEDB、STARE)と社内ROPデータセットに対するアプローチを検証する。
さらに、本モデルの有用性をROP多段階分類の下流タスクに拡張し、セグメンテーションモデルにより抽出された容器マスクの診断精度を向上させる。
分類における有望な結果は,臨床応用の可能性,特に早期ROP診断と介入の可能性を裏付けるものである。
全体として、我々の研究は、小児眼科におけるラベルなしデータを活用するためのスケーラブルなソリューションを提供し、バイオマーカー発見と臨床研究のための新たな道を開く。
関連論文リスト
- Enhancing AI Diagnostics: Autonomous Lesion Masking via Semi-Supervised Deep Learning [1.4053129774629076]
本研究では,乳房超音波(US)画像における乳房病変の鑑別を目的とした,関心領域(ROI)を自律的に生成することを目的とした,教師なし領域適応手法を提案する。
我々の半教師付き学習アプローチは、真のアノテーションを持つ小さな母乳USデータセットで訓練された原始モデルを利用する。
このモデルはドメイン適応タスクのために反復的に洗練され、当社のプライベートな無注釈乳房データセットに擬似マスクを生成します。
論文 参考訳(メタデータ) (2024-04-18T18:25:00Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
オプティカルコヒーレンス・トモグラフィーは、網膜微小血管の画像化によってアルツハイマー病(AD)を検出するための有望なツールである。
我々はPolar-Netと呼ばれる新しいディープラーニングフレームワークを提案し、解釈可能な結果を提供し、臨床上の事前知識を活用する。
Polar-Netは既存の最先端の手法よりも優れており,網膜血管変化とADとの関連性について,より貴重な病理学的証拠を提供する。
論文 参考訳(メタデータ) (2023-11-10T11:49:49Z) - Adaptive Semi-Supervised Segmentation of Brain Vessels with Ambiguous
Labels [63.415444378608214]
提案手法は, 進歩的半教師付き学習, 適応的学習戦略, 境界拡張など, 革新的な手法を取り入れたものである。
3DRAデータセットによる実験結果から,メッシュベースのセグメンテーション指標を用いて,本手法の優位性を示す。
論文 参考訳(メタデータ) (2023-08-07T14:16:52Z) - Partial Vessels Annotation-based Coronary Artery Segmentation with
Self-training and Prototype Learning [17.897934341782843]
冠動脈セグメンテーションの課題と臨床診断的特徴に基づく部分血管アノテーション(PVA)を提案する。
提案手法は,未ラベル領域に知識を伝達するための容器の局所的特徴を学習し,伝播過程に導入された誤りを補正する。
PVA(24.29%の船体)における競合手法よりも優れていることが臨床データから明らかとなった。
論文 参考訳(メタデータ) (2023-07-10T10:42:48Z) - Diffusion Adversarial Representation Learning for Self-supervised Vessel
Segmentation [36.65094442100924]
医療画像における血管分割は血管疾患の診断と治療計画において重要な課題の1つである。
本稿では,拡散確率モデルと逆学習を併用した新しい拡散逆表現学習(DARL)モデルを提案する。
本手法は血管セグメンテーションにおいて,既存の教師なし・自己教師付き手法を著しく上回っている。
論文 参考訳(メタデータ) (2022-09-29T06:06:15Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - A Macro-Micro Weakly-supervised Framework for AS-OCT Tissue Segmentation [33.684182783291064]
アジア人では, 一次角閉鎖緑内障(PACG)が非可逆性失明の原因となっている。
提案するフレームワークは,相互に信頼性の高いガイダンスを提供する2つのモデルで構成されている。
公開されているAGEデータセットの実験では、提案されたフレームワークが最先端の半弱教師付き手法より優れていることが示されている。
論文 参考訳(メタデータ) (2020-07-20T11:26:32Z) - Joint Learning of Vessel Segmentation and Artery/Vein Classification
with Post-processing [27.825969553813092]
血管分節と動脈・静脈の分類は、潜在的な疾患について様々な情報を提供する。
我々は、UNetベースのモデルSeqNetを採用し、背景から船舶を正確に分割し、船舶のタイプを予測する。
実験の結果,AUCを0.98に改善し,DRIVEデータセットの分類精度は0.92に向上した。
論文 参考訳(メタデータ) (2020-05-27T13:06:16Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。