Towards Human-Like Trajectory Prediction for Autonomous Driving: A Behavior-Centric Approach
- URL: http://arxiv.org/abs/2505.21565v1
- Date: Tue, 27 May 2025 05:04:01 GMT
- Title: Towards Human-Like Trajectory Prediction for Autonomous Driving: A Behavior-Centric Approach
- Authors: Haicheng Liao, Zhenning Li, Guohui Zhang, Keqiang Li, Chengzhong Xu,
- Abstract summary: HiT (Human-like Trajectory Prediction) is a novel model designed to enhance trajectory prediction by incorporating behavior-aware modules and dynamic centrality measures.<n>To evaluate HiT's performance, we conducted extensive experiments using diverse and challenging real-world datasets.
- Score: 22.81464823797471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the trajectories of vehicles is crucial for the development of autonomous driving (AD) systems, particularly in complex and dynamic traffic environments. In this study, we introduce HiT (Human-like Trajectory Prediction), a novel model designed to enhance trajectory prediction by incorporating behavior-aware modules and dynamic centrality measures. Unlike traditional methods that primarily rely on static graph structures, HiT leverages a dynamic framework that accounts for both direct and indirect interactions among traffic participants. This allows the model to capture the subtle yet significant influences of surrounding vehicles, enabling more accurate and human-like predictions. To evaluate HiT's performance, we conducted extensive experiments using diverse and challenging real-world datasets, including NGSIM, HighD, RounD, ApolloScape, and MoCAD++. The results demonstrate that HiT consistently outperforms other top models across multiple metrics, particularly excelling in scenarios involving aggressive driving behaviors. This research presents a significant step forward in trajectory prediction, offering a more reliable and interpretable approach for enhancing the safety and efficiency of fully autonomous driving systems.
Related papers
- Beyond Patterns: Harnessing Causal Logic for Autonomous Driving Trajectory Prediction [10.21659221112514]
We introduce a novel trajectory prediction framework that leverages causal inference to enhance predictive robustness, generalization, and accuracy.<n>Our findings highlight the potential of causal reasoning to transform trajectory prediction, paving the way for robust autonomous driving systems.
arXiv Detail & Related papers (2025-05-11T05:56:07Z) - The Role of World Models in Shaping Autonomous Driving: A Comprehensive Survey [50.62538723793247]
Driving World Model (DWM) focuses on predicting scene evolution during the driving process.<n>DWM methods enable autonomous driving systems to better perceive, understand, and interact with dynamic driving environments.
arXiv Detail & Related papers (2025-02-14T18:43:15Z) - Predictive Planner for Autonomous Driving with Consistency Models [5.966385886363771]
Trajectory prediction and planning are essential for autonomous vehicles to navigate safely and efficiently in dynamic environments.<n>Recent diffusion-based generative models have shown promise in multi-agent trajectory generation, but their slow sampling is less suitable for high-frequency planning tasks.<n>We leverage the consistency model to build a predictive planner that samples from a joint distribution of ego and surrounding agents, conditioned on the ego vehicle's navigational goal.
arXiv Detail & Related papers (2025-02-12T00:26:01Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling.<n>This paper systematically reviews recent advances in world models for autonomous driving.
arXiv Detail & Related papers (2025-01-20T04:00:02Z) - NEST: A Neuromodulated Small-world Hypergraph Trajectory Prediction Model for Autonomous Driving [15.17856086804651]
NEST (Neuromodulated Small-world Hypergraph Trajectory Prediction) is a novel framework that integrates Small-world Networks and hypergraphs for superior interaction modeling and prediction accuracy.<n>We validate the NEST model on several real-world datasets, including nuScenes, MoCAD, and HighD.
arXiv Detail & Related papers (2024-12-16T11:49:12Z) - Characterized Diffusion Networks for Enhanced Autonomous Driving Trajectory Prediction [0.6202955567445396]
We present a novel trajectory prediction model for autonomous driving.
Our model enhances the accuracy and reliability of trajectory predictions by incorporating uncertainty estimation and complex agent interactions.
The proposed model showcases strong potential for application in real-world autonomous driving systems.
arXiv Detail & Related papers (2024-11-25T15:03:44Z) - FollowGen: A Scaled Noise Conditional Diffusion Model for Car-Following Trajectory Prediction [9.2729178775419]
This study introduces a scaled noise conditional diffusion model for car-following trajectory prediction.
It integrates detailed inter-vehicular interactions and car-following dynamics into a generative framework, improving the accuracy and plausibility of predicted trajectories.
Experimental results on diverse real-world driving scenarios demonstrate the state-of-the-art performance and robustness of the proposed method.
arXiv Detail & Related papers (2024-11-23T23:13:45Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.<n>Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.<n>Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD (Iterative Interaction of Prediction and Planning Autonomous Driving) considers the timestep-wise interaction to better integrate prediction and planning.
We design ego-to-agent, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions.
arXiv Detail & Related papers (2023-11-14T11:53:24Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.