STA-Risk: A Deep Dive of Spatio-Temporal Asymmetries for Breast Cancer Risk Prediction
- URL: http://arxiv.org/abs/2505.21699v1
- Date: Tue, 27 May 2025 19:38:23 GMT
- Title: STA-Risk: A Deep Dive of Spatio-Temporal Asymmetries for Breast Cancer Risk Prediction
- Authors: Zhengbo Zhou, Dooman Arefan, Margarita Zuley, Jules Sumkin, Shandong Wu,
- Abstract summary: STA-Risk captures fine-grained mammographic imaging evolution simultaneously from bilateral and longitudinal asymmetries for breast cancer risk prediction.<n>We performed extensive experiments with two independent mammogram datasets and achieved superior performance than four representative SOTA models for 1- to 5-year future risk prediction.
- Score: 1.600919533339807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the risk of developing breast cancer is an important clinical tool to guide early intervention and tailoring personalized screening strategies. Early risk models have limited performance and recently machine learning-based analysis of mammogram images showed encouraging risk prediction effects. These models however are limited to the use of a single exam or tend to overlook nuanced breast tissue evolvement in spatial and temporal details of longitudinal imaging exams that are indicative of breast cancer risk. In this paper, we propose STA-Risk (Spatial and Temporal Asymmetry-based Risk Prediction), a novel Transformer-based model that captures fine-grained mammographic imaging evolution simultaneously from bilateral and longitudinal asymmetries for breast cancer risk prediction. STA-Risk is innovative by the side encoding and temporal encoding to learn spatial-temporal asymmetries, regulated by a customized asymmetry loss. We performed extensive experiments with two independent mammogram datasets and achieved superior performance than four representative SOTA models for 1- to 5-year future risk prediction. Source codes will be released upon publishing of the paper.
Related papers
- Deep Survival Analysis in Multimodal Medical Data: A Parametric and Probabilistic Approach with Competing Risks [47.19194118883552]
We introduce a multimodal deep learning framework for survival analysis capable of modeling both single and competing risks scenarios.<n>We propose SAMVAE (Survival Analysis Multimodal Variational Autoencoder), a novel deep learning architecture designed for survival prediction.
arXiv Detail & Related papers (2025-07-10T14:29:48Z) - VMRA-MaR: An Asymmetry-Aware Temporal Framework for Longitudinal Breast Cancer Risk Prediction [9.279703528115139]
We propose to leverage Vision Mamba RNN (VMRNN) with a state-space model (SSM) and LSTM-like memory mechanisms to capture nuanced trends in breast tissue evolution.<n>We incorporate a Spatial Asymmetry Detector (SAD) and Longitudinal Asymmetry Tracker (LAT) to identify clinically relevant bilateral differences.<n>This integrated framework demonstrates notable improvements in predicting cancer onset, especially for the more challenging high-density breast cases.
arXiv Detail & Related papers (2025-06-20T18:17:19Z) - Ordinal Learning: Longitudinal Attention Alignment Model for Predicting Time to Future Breast Cancer Events from Mammograms [16.06975226476176]
Our ordinal learning method OA-BreaCR outperforms existing methods in both BC risk and time-to-future-event prediction tasks.
Our findings underscore the importance of interpretable and precise risk assessment for enhancing BC screening and prevention efforts.
arXiv Detail & Related papers (2024-09-10T22:03:26Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Longitudinal Mammogram Risk Prediction [6.28887425442237]
We extend a state-of-the-art machine learning model to ingest an arbitrary number of longitudinal mammograms and predict future breast cancer risk.
Our results show that longer histories (e.g., up to four prior annual mammograms) can significantly boost the accuracy of predicting future breast cancer risk.
arXiv Detail & Related papers (2024-04-29T19:52:09Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
arXiv Detail & Related papers (2023-07-06T08:27:48Z) - RADIFUSION: A multi-radiomics deep learning based breast cancer risk
prediction model using sequential mammographic images with image attention
and bilateral asymmetry refinement [0.36355629235144304]
Our study highlights the importance of various deep learning mechanisms, such as image attention radiomic features, gating mechanism, and bilateral asymmetry-based fine-tuning.
Our findings suggest that RADIfusion can provide clinicians with a powerful tool for breast cancer risk assessment.
arXiv Detail & Related papers (2023-04-01T08:18:13Z) - Enhancing Breast Cancer Risk Prediction by Incorporating Prior Images [8.756888862171195]
We present a new method, PRIME+, for breast cancer risk prediction that leverages prior mammograms using a transformer decoder.
We validate our approach on a dataset with 16,113 exams and demonstrate that it effectively captures patterns of changes from prior mammograms.
Experimental results show that our model achieves a statistically significant improvement over the state-of-the-art based model, with a C-index increase from 0.68 to 0.73.
arXiv Detail & Related papers (2023-03-28T03:05:25Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
We develop a deep learning framework that can accurately predict and visualize the progression of osteolytic bone lesions.
It will assist in planning and evaluating treatment strategies to prevent skeletal related events (SREs) in breast cancer patients.
arXiv Detail & Related papers (2022-03-20T21:00:10Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
We present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction.
Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets.
arXiv Detail & Related papers (2020-10-05T14:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.