Are Statistical Methods Obsolete in the Era of Deep Learning?
- URL: http://arxiv.org/abs/2505.21723v1
- Date: Tue, 27 May 2025 20:11:21 GMT
- Title: Are Statistical Methods Obsolete in the Era of Deep Learning?
- Authors: Skyler Wu, Shihao Yang, S. C. Kou,
- Abstract summary: In the era of AI, neural networks have become increasingly popular for modeling, inference, and prediction.<n>With the proliferation of such deep learning models, a question arises: are leaner statistical methods still relevant?<n>We show that statistical methods are far from obsolete, especially when working with sparse and noisy observations.
- Score: 0.8329456268842228
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the era of AI, neural networks have become increasingly popular for modeling, inference, and prediction, largely due to their potential for universal approximation. With the proliferation of such deep learning models, a question arises: are leaner statistical methods still relevant? To shed insight on this question, we employ the mechanistic nonlinear ordinary differential equation (ODE) inverse problem as a testbed, using physics-informed neural network (PINN) as a representative of the deep learning paradigm and manifold-constrained Gaussian process inference (MAGI) as a representative of statistically principled methods. Through case studies involving the SEIR model from epidemiology and the Lorenz model from chaotic dynamics, we demonstrate that statistical methods are far from obsolete, especially when working with sparse and noisy observations. On tasks such as parameter inference and trajectory reconstruction, statistically principled methods consistently achieve lower bias and variance, while using far fewer parameters and requiring less hyperparameter tuning. Statistical methods can also decisively outperform deep learning models on out-of-sample future prediction, where the absence of relevant data often leads overparameterized models astray. Additionally, we find that statistically principled approaches are more robust to accumulation of numerical imprecision and can represent the underlying system more faithful to the true governing ODEs.
Related papers
- Bayesian Model Parameter Learning in Linear Inverse Problems with Application in EEG Focal Source Imaging [49.1574468325115]
Inverse problems can be described as limited-data problems in which the signal of interest cannot be observed directly.<n>We studied a linear inverse problem that included an unknown non-linear model parameter.<n>We utilized a Bayesian model-based learning approach that allowed signal recovery and subsequently estimation of the model parameter.
arXiv Detail & Related papers (2025-01-07T18:14:24Z) - How Inverse Conditional Flows Can Serve as a Substitute for Distributional Regression [2.9873759776815527]
We propose a framework for distributional regression using inverse flow transformations (DRIFT)
DRIFT covers both interpretable statistical models and flexible neural networks opening up new avenues in both statistical modeling and deep learning.
arXiv Detail & Related papers (2024-05-08T21:19:18Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
We present a unifying perspective on recent results on ridge regression.<n>We use the basic tools of random matrix theory and free probability, aimed at readers with backgrounds in physics and deep learning.<n>Our results extend and provide a unifying perspective on earlier models of scaling laws.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Neural parameter calibration for large-scale multi-agent models [0.7734726150561089]
We present a method to retrieve accurate probability densities for parameters using neural equations.
The two combined create a powerful tool that can quickly estimate densities on model parameters, even for very large systems.
arXiv Detail & Related papers (2022-09-27T17:36:26Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
We propose a technique for extracting submodels from singular models.
Our method enforces model identifiability during training.
We show how the method can be applied to more complex models like deep neural networks.
arXiv Detail & Related papers (2022-06-17T07:50:22Z) - DeepBayes -- an estimator for parameter estimation in stochastic
nonlinear dynamical models [11.917949887615567]
We propose DeepBayes estimators that leverage the power of deep recurrent neural networks in learning an estimator.
The deep recurrent neural network architectures can be trained offline and ensure significant time savings during inference.
We demonstrate the applicability of our proposed method on different example models and perform detailed comparisons with state-of-the-art approaches.
arXiv Detail & Related papers (2022-05-04T18:12:17Z) - A Free Lunch with Influence Functions? Improving Neural Network
Estimates with Concepts from Semiparametric Statistics [41.99023989695363]
We explore the potential for semiparametric theory to be used to improve neural networks and machine learning algorithms.
We propose a new neural network method MultiNet, which seeks the flexibility and diversity of an ensemble using a single architecture.
arXiv Detail & Related papers (2022-02-18T09:35:51Z) - Neural Networks for Parameter Estimation in Intractable Models [0.0]
We show how to estimate parameters from max-stable processes, where inference is exceptionally challenging.
We use data from model simulations as input and train deep neural networks to learn statistical parameters.
arXiv Detail & Related papers (2021-07-29T21:59:48Z) - Distributional Gradient Matching for Learning Uncertain Neural Dynamics
Models [38.17499046781131]
We propose a novel approach towards estimating uncertain neural ODEs, avoiding the numerical integration bottleneck.
Our algorithm - distributional gradient matching (DGM) - jointly trains a smoother and a dynamics model and matches their gradients via minimizing a Wasserstein loss.
Our experiments show that, compared to traditional approximate inference methods based on numerical integration, our approach is faster to train, faster at predicting previously unseen trajectories, and in the context of neural ODEs, significantly more accurate.
arXiv Detail & Related papers (2021-06-22T08:40:51Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.