Don't Think Longer, Think Wisely: Optimizing Thinking Dynamics for Large Reasoning Models
- URL: http://arxiv.org/abs/2505.21765v1
- Date: Tue, 27 May 2025 20:59:29 GMT
- Title: Don't Think Longer, Think Wisely: Optimizing Thinking Dynamics for Large Reasoning Models
- Authors: Sohyun An, Ruochen Wang, Tianyi Zhou, Cho-Jui Hsieh,
- Abstract summary: Large reasoning models (LRMs) may drastically increase the output length due to overthinking.<n>We propose a dynamic optimization framework that segments model-generated reasoning paths into distinct thinking patterns.<n>Our method achieves up to a 12% accuracy improvement and reducing token usage from approximately 5,000 to 3,000 tokens.
- Score: 68.96619605651155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While recent success of large reasoning models (LRMs) significantly advanced LLMs' reasoning capability by optimizing the final answer accuracy using reinforcement learning, they may also drastically increase the output length due to overthinking, characterized by unnecessarily complex reasoning paths that waste computation and potentially degrade the performance. We hypothesize that such inefficiencies stem from LRMs' limited capability to dynamically select the proper modular reasoning strategies, termed thinking patterns at the right position. To investigate this hypothesis, we propose a dynamic optimization framework that segments model-generated reasoning paths into distinct thinking patterns, systematically identifying and promoting beneficial patterns that improve the answer while removing detrimental ones. Empirical analysis confirms that our optimized thinking paths yield more concise yet sufficiently informative trajectories, enhancing reasoning efficiency by reducing attention FLOPs by up to 47% while maintaining accuracy for originally correct responses. Moreover, a non-trivial portion of originally incorrect responses are transformed into correct ones, achieving a 15.6% accuracy improvement with reduced length. Motivated by the improvement brought by the optimized thinking paths, we apply a preference optimization technique supported by a pairwise dataset contrasting suboptimal and optimal reasoning paths. Experimental evaluations across multiple mathematical reasoning benchmarks reveal that our method notably reduces computational overhead while simultaneously improving reasoning accuracy, achieving up to a 12% accuracy improvement and reducing token usage from approximately 5,000 to 3,000 tokens.
Related papers
- Accelerating LLM Reasoning via Early Rejection with Partial Reward Modeling [12.835376812101323]
We introduce the hypothesis that PRMs are also Partial Reward Models.<n>This allows for principled early rejection based on intermediate token-level signals.<n>On math reasoning benchmarks, our method achieves up to 1.4$times$-9$times$ reduction in inference FLOPs without degrading final performance.
arXiv Detail & Related papers (2025-08-04T00:58:56Z) - AALC: Large Language Model Efficient Reasoning via Adaptive Accuracy-Length Control [18.273777938294327]
Large reasoning models (LRMs) achieve impressive reasoning capabilities by generating lengthy chain-of-thoughts.<n>We introduce AALC, a lightweight, accuracy-aware length reward integrated into reinforcement learning.<n>We show that our approach reduces response length by over 50% while maintaining or even improving the original accuracy.
arXiv Detail & Related papers (2025-06-25T06:29:18Z) - Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement [101.77467538102924]
Large reasoning models (LRMs) exhibit overthinking, which hinders efficiency and inflates inference cost.<n>We propose two lightweight methods to enhance LRM efficiency.<n>First, we introduce Efficiency Steering, a training-free activation steering technique that modulates reasoning behavior via a single direction.<n>Second, we develop Self-Rewarded Efficiency RL, a reinforcement learning framework that dynamically balances task accuracy and brevity.
arXiv Detail & Related papers (2025-06-18T17:18:12Z) - LIMOPro: Reasoning Refinement for Efficient and Effective Test-time Scaling [29.721108461390973]
We introduce PIR (Perplexity-based Importance Refinement), a principled framework that quantitatively evaluates the importance of each reasoning step.<n>PIR identifies and selectively prunes only low-importance functional steps while preserving progressive reasoning components.<n>Our approach demonstrates strong generalizability across different model sizes, data sources, and token budgets.
arXiv Detail & Related papers (2025-05-25T15:17:57Z) - Think or Not? Exploring Thinking Efficiency in Large Reasoning Models via an Information-Theoretic Lens [51.90059610606049]
This paper revisits the efficiency of such reasoning processes through an information-theoretic lens.<n>We propose two metrics, InfoBias and InfoGain, to quantify divergence from ideal reasoning paths and stepwise information contribution.<n>Motivated by these findings, we introduce an entropy-based Adaptive Think strategy that dynamically halts reasoning once confidence is sufficiently high.
arXiv Detail & Related papers (2025-05-23T13:38:56Z) - Prolonged Reasoning Is Not All You Need: Certainty-Based Adaptive Routing for Efficient LLM/MLLM Reasoning [27.498043430208085]
Excessive reliance on chain-of-thought (CoT) reasoning can impair model performance.<n>We propose Certainty-based Adaptive Reasoning (CAR)<n>CAR switches between short answers and long-form reasoning based on the model perplexity.
arXiv Detail & Related papers (2025-05-21T06:20:17Z) - Efficient RL Training for Reasoning Models via Length-Aware Optimization [108.88337262486819]
We propose three critical reward designs integrated directly into the reinforcement learning process of large reasoning models.<n>Our method significantly decreases response length while maintaining or even improving performance.
arXiv Detail & Related papers (2025-05-18T07:46:43Z) - Ada-R1: Hybrid-CoT via Bi-Level Adaptive Reasoning Optimization [86.56120216550232]
We propose a novel two-stage framework for adaptive and efficient reasoning.<n>First, we construct a hybrid reasoning model by merging long and short CoT models.<n>Second, we apply bi-level preference training to guide the model to select suitable reasoning styles.
arXiv Detail & Related papers (2025-04-30T14:01:45Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.<n>Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.