LIMOPro: Reasoning Refinement for Efficient and Effective Test-time Scaling
- URL: http://arxiv.org/abs/2505.19187v1
- Date: Sun, 25 May 2025 15:17:57 GMT
- Title: LIMOPro: Reasoning Refinement for Efficient and Effective Test-time Scaling
- Authors: Yang Xiao, Jiashuo Wang, Ruifeng Yuan, Chunpu Xu, Kaishuai Xu, Wenjie Li, Pengfei Liu,
- Abstract summary: We introduce PIR (Perplexity-based Importance Refinement), a principled framework that quantitatively evaluates the importance of each reasoning step.<n>PIR identifies and selectively prunes only low-importance functional steps while preserving progressive reasoning components.<n>Our approach demonstrates strong generalizability across different model sizes, data sources, and token budgets.
- Score: 29.721108461390973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable reasoning capabilities through test-time scaling approaches, particularly when fine-tuned with chain-of-thought (CoT) data distilled from more powerful large reasoning models (LRMs). However, these reasoning chains often contain verbose elements that mirror human problem-solving, categorized as progressive reasoning (the essential solution development path) and functional elements (verification processes, alternative solution approaches, and error corrections). While progressive reasoning is crucial, the functional elements significantly increase computational demands during test-time inference. We introduce PIR (Perplexity-based Importance Refinement), a principled framework that quantitatively evaluates the importance of each reasoning step based on its impact on answer prediction confidence. PIR systematically identifies and selectively prunes only low-importance functional steps while preserving progressive reasoning components, creating optimized training data that maintains the integrity of the core solution path while reducing verbosity. Models fine-tuned on PIR-optimized data exhibit superior test-time scaling properties, generating more concise reasoning chains while achieving improved accuracy (+0.9\% to +6.6\%) with significantly reduced token usage (-3\% to -41\%) across challenging reasoning benchmarks (AIME, AMC, and GPQA Diamond). Our approach demonstrates strong generalizability across different model sizes, data sources, and token budgets, offering a practical solution for deploying reasoning-capable LLMs in scenarios where efficient test-time scaling, response time, and computational efficiency are valuable constraints.
Related papers
- SmartThinker: Learning to Compress and Preserve Reasoning by Step-Level Length Control [5.224609066309358]
Large reasoning models (LRMs) have exhibited remarkable reasoning capabilities through inference-time scaling.<n>Previous work has attempted to mitigate this issue by penalizing the overall length of generated samples during reinforcement learning.<n>We propose SmartThinker, a two-stage learnable framework designed to enable fine-grained control over the length of reasoning chains.
arXiv Detail & Related papers (2025-07-06T11:21:47Z) - Accelerated Test-Time Scaling with Model-Free Speculative Sampling [58.69141724095398]
We introduce STAND (STochastic Adaptive N-gram Drafting), a novel model-free speculative decoding approach.<n>We show that STAND reduces inference latency by 60-65% compared to standard autoregressive decoding.<n>As a model-free approach, STAND can be applied to any existing language model without additional training.
arXiv Detail & Related papers (2025-06-05T07:31:18Z) - PixelThink: Towards Efficient Chain-of-Pixel Reasoning [70.32510083790069]
PixelThink is a simple yet effective scheme that integrates externally estimated task difficulty and internally measured model uncertainty.<n>It learns to compress reasoning length in accordance with scene complexity and predictive confidence.<n> Experimental results demonstrate that the proposed approach improves both reasoning efficiency and overall segmentation performance.
arXiv Detail & Related papers (2025-05-29T17:55:49Z) - Don't Think Longer, Think Wisely: Optimizing Thinking Dynamics for Large Reasoning Models [68.96619605651155]
Large reasoning models (LRMs) may drastically increase the output length due to overthinking.<n>We propose a dynamic optimization framework that segments model-generated reasoning paths into distinct thinking patterns.<n>Our method achieves up to a 12% accuracy improvement and reducing token usage from approximately 5,000 to 3,000 tokens.
arXiv Detail & Related papers (2025-05-27T20:59:29Z) - Self-Route: Automatic Mode Switching via Capability Estimation for Efficient Reasoning [36.470695895695044]
Self-Route is a dynamic reasoning framework that automatically selects between general and reasoning modes.<n>We show that Self-Route achieves comparable accuracy to reasoning models while reducing token consumption by 30-55%.
arXiv Detail & Related papers (2025-05-27T03:18:31Z) - Think or Not? Exploring Thinking Efficiency in Large Reasoning Models via an Information-Theoretic Lens [51.90059610606049]
This paper revisits the efficiency of such reasoning processes through an information-theoretic lens.<n>We propose two metrics, InfoBias and InfoGain, to quantify divergence from ideal reasoning paths and stepwise information contribution.<n>Motivated by these findings, we introduce an entropy-based Adaptive Think strategy that dynamically halts reasoning once confidence is sufficiently high.
arXiv Detail & Related papers (2025-05-23T13:38:56Z) - Fractured Chain-of-Thought Reasoning [61.647243580650446]
We introduce Fractured Sampling, a unified inference-time strategy that interpolates between full CoT and solution-only sampling.<n>We show that Fractured Sampling consistently achieves superior accuracy-cost trade-offs, yielding steep log-linear scaling gains in Pass@k versus token budget.
arXiv Detail & Related papers (2025-05-19T11:30:41Z) - Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement [22.801244105119025]
We propose new algorithms to improve token-efficient reasoning with small-scale models by effectively trading off accuracy and computation.<n>We first show that the post-SFT model fails to determine the optimal stopping point of the reasoning process, resulting in verbose and repetitive outputs.<n>Experiments on four reasoning benchmarks, MATH500, AMC, AIME24 and OlympiadBench, demonstrate that TS is highly effective compared to s1's budget forcing approach.
arXiv Detail & Related papers (2025-05-12T18:04:39Z) - R-PRM: Reasoning-Driven Process Reward Modeling [53.06844294668382]
Process Reward Models (PRMs) have emerged as a promising solution by evaluating each reasoning step.<n>Existing PRMs typically output evaluation scores directly, limiting both learning efficiency and evaluation accuracy.<n>We propose Reasoning-Driven Process Reward Modeling (R-PRM)<n>R-PRM generates seed data from limited annotations, effectively bootstrapping our model's reasoning capabilities.
arXiv Detail & Related papers (2025-03-27T09:23:08Z) - The First Few Tokens Are All You Need: An Efficient and Effective Unsupervised Prefix Fine-Tuning Method for Reasoning Models [69.798277882245]
We introduce Unsupervised Prefix Fine-Tuning (UPFT) to enhance large language models' reasoning efficiency.<n>UPFT removes the need for labeled data or exhaustive sampling.<n> Experiments show that UPFT matches the performance of supervised methods.
arXiv Detail & Related papers (2025-03-04T18:56:03Z) - Scalable Best-of-N Selection for Large Language Models via Self-Certainty [65.31658824274894]
Best-of-N selection is a key technique for improving the reasoning performance of Large Language Models.<n>We propose self-certainty, a novel and efficient metric to estimate response quality without requiring external reward models.<n>Our findings establish self-certainty as a practical and efficient way for improving LLM reasoning capabilities.
arXiv Detail & Related papers (2025-02-25T19:08:07Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [49.362750475706235]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.<n>We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.<n> Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - Think Beyond Size: Adaptive Prompting for More Effective Reasoning [0.0]
We introduce Adaptive Prompting, a dynamic and iterative framework designed to enhance reasoning by incorporating real-time adjustments to prompt structures and validation mechanisms.<n>Results demonstrate that Adaptive Prompting significantly improves performance on diverse reasoning benchmarks, including arithmetic reasoning (GSM8K, MultiArithm), logical reasoning and commonsense tasks.<n>Our approach enables smaller models to achieve competitive performance with larger counterparts, such as GPT-4, while maintaining computational efficiency.
arXiv Detail & Related papers (2024-10-10T17:14:36Z) - Derailer-Rerailer: Adaptive Verification for Efficient and Reliable Language Model Reasoning [11.765298236504155]
Derailer-Rerailer is a novel framework that balances reasoning accuracy and computational efficiency.<n>Our framework achieves significant accuracy improvements (8-11% across various reasoning tasks) while maintaining 2-3 times better efficiency than existing verification methods.
arXiv Detail & Related papers (2024-08-25T21:20:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.