論文の概要: Extracting Research Instruments from Educational Literature Using LLMs
- arxiv url: http://arxiv.org/abs/2505.21855v1
- Date: Wed, 28 May 2025 01:00:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:50.346029
- Title: Extracting Research Instruments from Educational Literature Using LLMs
- Title(参考訳): LLMを用いた教育文献からの研究機器の抽出
- Authors: Jiseung Yoo, Curran Mahowald, Meiyu Li, Wei Ai,
- Abstract要約: 大規模言語モデル (LLM) は学術文献から情報を抽出する。
本研究では,教育分野における研究機器の詳細な情報抽出を目的としたLLMシステムを提案する。
- 参考スコア(独自算出の注目度): 0.5351587535280344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are transforming information extraction from academic literature, offering new possibilities for knowledge management. This study presents an LLM-based system designed to extract detailed information about research instruments used in the education field, including their names, types, target respondents, measured constructs, and outcomes. Using multi-step prompting and a domain-specific data schema, it generates structured outputs optimized for educational research. Our evaluation shows that this system significantly outperforms other approaches, particularly in identifying instrument names and detailed information. This demonstrates the potential of LLM-powered information extraction in educational contexts, offering a systematic way to organize research instrument information. The ability to aggregate such information at scale enhances accessibility for researchers and education leaders, facilitating informed decision-making in educational research and policy.
- Abstract(参考訳): 大規模言語モデル(LLM)は学術文献から情報を抽出し、知識管理の新しい可能性を提供している。
本研究は, 教育現場で使用される研究機器について, 名称, タイプ, 対象者, 測定構造, 結果などの詳細情報を抽出するLLMに基づくシステムを提案する。
マルチステッププロンプトとドメイン固有のデータスキーマを使用して、教育研究に最適化された構造化出力を生成する。
評価の結果,他の手法,特に楽器名や詳細な情報の同定において,本システムの方が優れていたことが示唆された。
このことは、LLMによる情報抽出の可能性を示し、研究機器情報を組織化するための体系的な方法を提供する。
このような情報を大規模に集約する能力は、研究者や教育指導者のアクセシビリティを高め、教育研究や政策における情報的意思決定を促進する。
関連論文リスト
- How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective [64.00022624183781]
大規模言語モデル(LLM)は、関連性を評価し、情報検索(IR)タスクをサポートする。
メカニスティック・インタプリタビリティのレンズを用いて,異なるLLMモジュールが関係判断にどのように寄与するかを検討する。
論文 参考訳(メタデータ) (2025-04-10T16:14:55Z) - Human-artificial intelligence teaming for scientific information extraction from data-driven additive manufacturing research using large language models [3.0061386772253784]
近年,データ駆動型アダプティブ・マニュファクチャリング(AM)の研究は大きな成功を収めている。
この結果、多くの科学文献が誕生した。
これらの作品から科学的情報を取り出すにはかなりの労力と時間を要する。
本稿では,AMとAIの専門家が共同で,データ駆動型AM文献から科学情報を継続的に抽出するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-26T15:43:52Z) - From Text to Insight: Large Language Models for Materials Science Data Extraction [4.08853418443192]
科学知識の大部分は、構造化されていない自然言語に存在する。
構造化データは革新的で体系的な材料設計に不可欠である。
大きな言語モデル(LLM)の出現は、大きな変化を示している。
論文 参考訳(メタデータ) (2024-07-23T22:23:47Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Tool Learning with Large Language Models: A Survey [60.733557487886635]
大規模言語モデル(LLM)を用いたツール学習は,高度に複雑な問題に対処するLLMの能力を強化するための,有望なパラダイムとして登場した。
この分野での注目と急速な進歩にもかかわらず、現存する文献は断片化され、体系的な組織が欠如している。
論文 参考訳(メタデータ) (2024-05-28T08:01:26Z) - Automating Research Synthesis with Domain-Specific Large Language Model Fine-Tuning [0.9110413356918055]
本研究は,SLR(Systematic Literature Reviews)の自動化にLLM(Funture-Tuned Large Language Models)を用いた先駆的研究である。
本研究は,オープンソースLLMとともに最新の微調整手法を採用し,SLRプロセスの最終実行段階を自動化するための実用的で効率的な手法を実証した。
その結果, LLM応答の精度は高く, 既存のPRISMAコンフォーミングSLRの複製により検証された。
論文 参考訳(メタデータ) (2024-04-08T00:08:29Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
各視点の技術的進歩を体系的にレビューし、関連するデータセットとベンチマークを整理し、教育におけるLSMの展開に伴うリスクと課題を特定する。
本調査は、LLMの力を利用して教育実践を変革し、より効果的なパーソナライズされた学習環境を育むための、教育者、研究者、政策立案者のための総合的な技術図を提供することを目的とする。
論文 参考訳(メタデータ) (2024-03-26T21:04:29Z) - Large Language Models for Conducting Advanced Text Analytics Information Systems Research [4.913568041651961]
大規模言語モデル(LLM)は、巨大な構造化されていないテキストデータセットから洞察を処理および抽出できるツールとして登場した。
本稿では,情報システム研究のためのテキスト分析(TAISR)フレームワークを提案し,LLMの運用方法を理解するために情報システムコミュニティを支援する。
論文 参考訳(メタデータ) (2023-12-27T19:49:00Z) - Exploring the Cognitive Knowledge Structure of Large Language Models: An
Educational Diagnostic Assessment Approach [50.125704610228254]
大規模言語モデル(LLM)は、様々なタスクにまたがる例外的なパフォーマンスを示すだけでなく、知性の火花も示している。
近年の研究では、人間の試験における能力の評価に焦点が当てられ、異なる領域における彼らの印象的な能力を明らかにしている。
ブルーム分類に基づく人体検査データセットであるMoocRadarを用いて評価を行った。
論文 参考訳(メタデータ) (2023-10-12T09:55:45Z) - A Comprehensive Survey on Deep Learning Techniques in Educational Data Mining [26.349367339930083]
教育データマイニング(EDM: Educational Data Mining)は、計算技術の力を利用して教育データを分析する研究分野として発展してきた。
ディープラーニング技術は、データの分析とモデリングに関わる課題に対処する上で、大きな利点を示してきた。
この調査は、Deep LearningによるEDMの最先端を体系的にレビューすることを目的としている。
論文 参考訳(メタデータ) (2023-09-09T11:20:40Z) - Instruction Tuning for Large Language Models: A Survey [52.86322823501338]
我々は、教師付き微調整(SFT)の一般的な方法論を含む、文献の体系的なレビューを行う。
また、既存の戦略の欠陥を指摘しながら、SFTの潜在的な落とし穴についても、それに対する批判とともに検討する。
論文 参考訳(メタデータ) (2023-08-21T15:35:16Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
本稿では,いくつかの既存モデルを含む汎用的な検索強化機械学習フレームワークについて述べる。
REMLは情報検索の慣例に挑戦し、最適化を含む中核領域における新たな進歩の機会を提示している。
REMLリサーチアジェンダは、情報アクセス研究の新しいスタイルの基礎を築き、機械学習と人工知能の進歩への道を開く。
論文 参考訳(メタデータ) (2022-05-02T21:42:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。