Targeted Unlearning Using Perturbed Sign Gradient Methods With Applications On Medical Images
- URL: http://arxiv.org/abs/2505.21872v1
- Date: Wed, 28 May 2025 01:36:57 GMT
- Title: Targeted Unlearning Using Perturbed Sign Gradient Methods With Applications On Medical Images
- Authors: George R. Nahass, Zhu Wang, Homa Rashidisabet, Won Hwa Kim, Sasha Hubschman, Jeffrey C. Peterson, Ghasem Yazdanpanah, Chad A. Purnell, Pete Setabutr, Ann Q. Tran, Darvin Yi, Sathya N. Ravi,
- Abstract summary: We recast machine unlearning as a general-purpose tool for post-deployment model revision.<n>We propose a bilevel optimization formulation of boundary-based unlearning.<n>We provide convergence guarantees when first-order algorithms are used to unlearn.
- Score: 10.121286947766388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine unlearning aims to remove the influence of specific training samples from a trained model without full retraining. While prior work has largely focused on privacy-motivated settings, we recast unlearning as a general-purpose tool for post-deployment model revision. Specifically, we focus on utilizing unlearning in clinical contexts where data shifts, device deprecation, and policy changes are common. To this end, we propose a bilevel optimization formulation of boundary-based unlearning that can be solved using iterative algorithms. We provide convergence guarantees when first-order algorithms are used to unlearn. Our method introduces tunable loss design for controlling the forgetting-retention tradeoff and supports novel model composition strategies that merge the strengths of distinct unlearning runs. Across benchmark and real-world clinical imaging datasets, our approach outperforms baselines on both forgetting and retention metrics, including scenarios involving imaging devices and anatomical outliers. This work establishes machine unlearning as a modular, practical alternative to retraining for real-world model maintenance in clinical applications.
Related papers
- Adjusting Pretrained Backbones for Performativity [34.390793811659556]
We propose a novel technique to adjust pretrained backbones for performativity in a modular way.
We show how it leads to smaller loss along the retraining trajectory and enables us to effectively select among candidate models to anticipate performance degradations.
arXiv Detail & Related papers (2024-10-06T14:41:13Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [52.03511469562013]
We introduce the Iterative Contrastive Unlearning (ICU) framework, which consists of three core components.<n>A Knowledge Unlearning Induction module targets specific knowledge for removal using an unlearning loss.<n>A Contrastive Learning Enhancement module preserves the model's expressive capabilities against the pure unlearning goal.<n>An Iterative Unlearning Refinement module dynamically adjusts the unlearning process through ongoing evaluation and updates.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - A Classifier-Free Incremental Learning Framework for Scalable Medical Image Segmentation [6.591403935303867]
We introduce a novel segmentation paradigm enabling the segmentation of a variable number of classes within a single classifier-free network.
This network is trained using contrastive learning and produces discriminative feature representations that facilitate straightforward interpretation.
We demonstrate the flexibility of our method in handling varying class numbers within a unified network and its capacity for incremental learning.
arXiv Detail & Related papers (2024-05-25T19:05:07Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - DUCK: Distance-based Unlearning via Centroid Kinematics [40.2428948628001]
This work introduces a novel unlearning algorithm, denoted as Distance-based Unlearning via Centroid Kinematics (DUCK)
evaluation of the algorithm's performance is conducted across various benchmark datasets.
We also introduce a novel metric, called Adaptive Unlearning Score (AUS), encompassing not only the efficacy of the unlearning process in forgetting target data but also quantifying the performance loss relative to the original model.
arXiv Detail & Related papers (2023-12-04T17:10:25Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Self-Distillation for Further Pre-training of Transformers [83.84227016847096]
We propose self-distillation as a regularization for a further pre-training stage.
We empirically validate the efficacy of self-distillation on a variety of benchmark datasets for image and text classification tasks.
arXiv Detail & Related papers (2022-09-30T02:25:12Z) - Continual Active Learning Using Pseudo-Domains for Limited Labelling
Resources and Changing Acquisition Characteristics [2.6105699925188257]
Machine learning in medical imaging during clinical routine is impaired by changes in scanner protocols, hardware, or policies.
We propose a method for continual active learning operating on a stream of medical images in a multi-scanner setting.
arXiv Detail & Related papers (2021-11-25T13:11:49Z) - Continual Active Learning for Efficient Adaptation of Machine Learning
Models to Changing Image Acquisition [3.205205037629335]
We propose a method for continual active learning on a data stream of medical images.
It recognizes shifts or additions of new imaging sources - domains - and adapts training accordingly.
Results demonstrate that the proposed method outperforms naive active learning while requiring less manual labelling.
arXiv Detail & Related papers (2021-06-07T05:39:06Z) - Self-supervised Augmentation Consistency for Adapting Semantic
Segmentation [56.91850268635183]
We propose an approach to domain adaptation for semantic segmentation that is both practical and highly accurate.
We employ standard data augmentation techniques $-$ photometric noise, flipping and scaling $-$ and ensure consistency of the semantic predictions.
We achieve significant improvements of the state-of-the-art segmentation accuracy after adaptation, consistent both across different choices of the backbone architecture and adaptation scenarios.
arXiv Detail & Related papers (2021-04-30T21:32:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.