Modeling and Optimizing User Preferences in AI Copilots: A Comprehensive Survey and Taxonomy
- URL: http://arxiv.org/abs/2505.21907v2
- Date: Sat, 31 May 2025 04:48:02 GMT
- Title: Modeling and Optimizing User Preferences in AI Copilots: A Comprehensive Survey and Taxonomy
- Authors: Saleh Afzoon, Zahra Jahanandish, Phuong Thao Huynh, Amin Beheshti, Usman Naseem,
- Abstract summary: AI copilots represent a new generation of AI-powered systems designed to assist users in complex, context-rich tasks.<n>Central to this personalization is preference optimization: the system's ability to detect, interpret, and align with individual user preferences.<n>This survey examines how user preferences are operationalized in AI copilots.
- Score: 5.985777189633703
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: AI copilots represent a new generation of AI-powered systems designed to assist users, particularly knowledge workers and developers, in complex, context-rich tasks. As these systems become more embedded in daily workflows, personalization has emerged as a critical factor for improving usability, effectiveness, and user satisfaction. Central to this personalization is preference optimization: the system's ability to detect, interpret, and align with individual user preferences. While prior work in intelligent assistants and optimization algorithms is extensive, their intersection within AI copilots remains underexplored. This survey addresses that gap by examining how user preferences are operationalized in AI copilots. We investigate how preference signals are sourced, modeled across different interaction stages, and refined through feedback loops. Building on a comprehensive literature review, we define the concept of an AI copilot and introduce a taxonomy of preference optimization techniques across pre-, mid-, and post-interaction phases. Each technique is evaluated in terms of advantages, limitations, and design implications. By consolidating fragmented efforts across AI personalization, human-AI interaction, and language model adaptation, this work offers both a unified conceptual foundation and a practical design perspective for building user-aligned, persona-aware AI copilots that support end-to-end adaptability and deployment.
Related papers
- Vibe Coding vs. Agentic Coding: Fundamentals and Practical Implications of Agentic AI [0.36868085124383626]
Review presents a comprehensive analysis of two emerging paradigms in AI-assisted software development: vibe coding and agentic coding.<n> Vibe coding emphasizes intuitive, human-in-the-loop interaction through prompt-based, conversational interaction.<n>Agentic coding enables autonomous software development through goal-driven agents capable of planning, executing, testing, and iterating tasks with minimal human intervention.
arXiv Detail & Related papers (2025-05-26T03:00:21Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - A Survey of Direct Preference Optimization [103.59317151002693]
Large Language Models (LLMs) have demonstrated unprecedented generative capabilities.<n>Their alignment with human values remains critical for ensuring helpful and harmless deployments.<n>Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative.
arXiv Detail & Related papers (2025-03-12T08:45:15Z) - Training a Generally Curious Agent [86.84089201249104]
Paprika is a fine-tuning approach that enables language models to develop general decision-making capabilities.<n>Paprika teaches models to explore and adapt their behavior on a new task based on environment feedback in-context without more gradient updates.<n>Results suggest a promising path towards AI systems that can autonomously solve sequential decision-making problems.
arXiv Detail & Related papers (2025-02-24T18:56:58Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AI agents are increasingly being deployed to automate tasks, often based on ambiguous and underspecified user instructions.<n>Making unwarranted assumptions and failing to ask clarifying questions can lead to suboptimal outcomes.<n>We study the ability of LLM agents to handle ambiguous instructions in interactive code generation settings by evaluating proprietary and open-weight models on their performance.
arXiv Detail & Related papers (2025-02-18T17:12:26Z) - Improving User Experience in Preference-Based Optimization of Reward Functions for Assistive Robots [5.523009758632668]
We show that CMA-ES-IG prioritizes the user's experience of the preference learning process.
We show that users find our algorithm more intuitive than previous approaches across both physical and social robot tasks.
arXiv Detail & Related papers (2024-11-17T21:52:58Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - Integrating Human Expertise in Continuous Spaces: A Novel Interactive
Bayesian Optimization Framework with Preference Expected Improvement [0.5148939336441986]
Interactive Machine Learning (IML) seeks to integrate human expertise into machine learning processes.
We propose a novel framework based on Bayesian Optimization (BO)
BO enables collaboration between machine learning algorithms and humans.
arXiv Detail & Related papers (2024-01-23T11:14:59Z) - Reinforcement Learning Beyond Expectation [11.428014000851535]
Cumulative prospect theory (CPT) is a paradigm that has been empirically shown to model a tendency of humans to view gains and losses differently.
In this paper, we consider a setting where an autonomous agent has to learn behaviors in an unknown environment.
In order to endow the agent with the ability to closely mimic the behavior of human users, we optimize a CPT-based cost.
arXiv Detail & Related papers (2021-03-29T20:35:25Z) - User-Oriented Smart General AI System under Causal Inference [0.0]
General AI system solves a wide range of tasks with high performance in an automated fashion.
The best general AI algorithm designed by one individual is different from that devised by another.
Tacit knowledge depends upon user-specific comprehension of task information and individual model design preferences.
arXiv Detail & Related papers (2021-03-25T08:34:35Z) - Optimizing Interactive Systems via Data-Driven Objectives [70.3578528542663]
We propose an approach that infers the objective directly from observed user interactions.
These inferences can be made regardless of prior knowledge and across different types of user behavior.
We introduce Interactive System (ISO), a novel algorithm that uses these inferred objectives for optimization.
arXiv Detail & Related papers (2020-06-19T20:49:14Z) - Model-based Reinforcement Learning for Decentralized Multiagent
Rendezvous [66.6895109554163]
Underlying the human ability to align goals with other agents is their ability to predict the intentions of others and actively update their own plans.
We propose hierarchical predictive planning (HPP), a model-based reinforcement learning method for decentralized multiagent rendezvous.
arXiv Detail & Related papers (2020-03-15T19:49:20Z) - Optimal by Design: Model-Driven Synthesis of Adaptation Strategies for
Autonomous Systems [9.099295007630484]
We present Optimal by Design (ObD), a framework for model-based requirements-driven synthesis of optimal adaptation strategies for autonomous systems.
ObD proposes a model for the high-level description of the basic elements of self-adaptive systems, namely the system, capabilities, requirements and environment.
Based on those elements, a Markov Decision Process (MDP) is constructed to compute the optimal strategy or the most rewarding system behaviour.
arXiv Detail & Related papers (2020-01-16T12:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.