Can Test-time Computation Mitigate Memorization Bias in Neural Symbolic Regression?
- URL: http://arxiv.org/abs/2505.22081v1
- Date: Wed, 28 May 2025 08:01:25 GMT
- Title: Can Test-time Computation Mitigate Memorization Bias in Neural Symbolic Regression?
- Authors: Shun Sato, Issei Sato,
- Abstract summary: Symbolic regression aims to discover mathematical equations that fit given numerical data.<n>Recent methods that involve Transformers pre-trained on large-scale synthetic datasets have gained attention.<n>While these methods offer advantages such as short inference time, they suffer from low performance, particularly when the number of input variables is large.
- Score: 32.15408441849578
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Symbolic regression aims to discover mathematical equations that fit given numerical data. It has been applied in various fields of scientific research, such as producing human-readable expressions that explain physical phenomena. Recently, Neural symbolic regression (NSR) methods that involve Transformers pre-trained on large-scale synthetic datasets have gained attention. While these methods offer advantages such as short inference time, they suffer from low performance, particularly when the number of input variables is large. In this study, we hypothesized that this limitation stems from the memorization bias of Transformers in symbolic regression. We conducted a quantitative evaluation of this bias in Transformers using a synthetic dataset and found that Transformers rarely generate expressions not present in the training data. Additional theoretical analysis reveals that this bias arises from the Transformer's inability to construct expressions compositionally while verifying their numerical validity. We finally examined if tailoring test-time strategies can lead to reduced memorization bias and better performance. We empirically demonstrate that providing additional information to the model at test time can significantly mitigate memorization bias. On the other hand, we also find that reducing memorization bias does not necessarily correlate with improved performance. These findings contribute to a deeper understanding of the limitations of NSR approaches and offer a foundation for designing more robust, generalizable symbolic regression methods. Code is available at https://github.com/Shun-0922/Mem-Bias-NSR .
Related papers
- Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
We show that efficient numerical training and inference algorithms as low-rank computation have impressive performance for learning Transformer-based adaption.
We analyze how magnitude-based models affect generalization while improving adaption.
We conclude that proper magnitude-based has a slight on the testing performance.
arXiv Detail & Related papers (2024-06-24T23:00:58Z) - Deep Generative Symbolic Regression [83.04219479605801]
Symbolic regression aims to discover concise closed-form mathematical equations from data.
Existing methods, ranging from search to reinforcement learning, fail to scale with the number of input variables.
We propose an instantiation of our framework, Deep Generative Symbolic Regression.
arXiv Detail & Related papers (2023-12-30T17:05:31Z) - A Transformer Model for Symbolic Regression towards Scientific Discovery [11.827358526480323]
Symbolic Regression (SR) searches for mathematical expressions which best describe numerical datasets.
We propose a new Transformer model aiming at Symbolic Regression particularly focused on its application for Scientific Discovery.
We apply our best model to the SRSD datasets which yields state-of-the-art results using the normalized tree-based edit distance.
arXiv Detail & Related papers (2023-12-07T06:27:48Z) - From Fake to Real: Pretraining on Balanced Synthetic Images to Prevent Spurious Correlations in Image Recognition [64.59093444558549]
We propose a simple, easy-to-implement, two-step training pipeline that we call From Fake to Real.
By training on real and synthetic data separately, FFR does not expose the model to the statistical differences between real and synthetic data.
Our experiments show that FFR improves worst group accuracy over the state-of-the-art by up to 20% over three datasets.
arXiv Detail & Related papers (2023-08-08T19:52:28Z) - Unsupervised Learning of Invariance Transformations [105.54048699217668]
We develop an algorithmic framework for finding approximate graph automorphisms.
We discuss how this framework can be used to find approximate automorphisms in weighted graphs in general.
arXiv Detail & Related papers (2023-07-24T17:03:28Z) - Trained Transformers Learn Linear Models In-Context [39.56636898650966]
Attention-based neural networks as transformers have demonstrated a remarkable ability to exhibit inattention learning (ICL)
We show that when transformer training over random instances of linear regression problems, these models' predictions mimic nonlinear of ordinary squares.
arXiv Detail & Related papers (2023-06-16T15:50:03Z) - Controllable Neural Symbolic Regression [10.128755371375572]
In symbolic regression, the goal is to find an analytical expression that fits experimental data with the minimal use of mathematical symbols.
We propose a novel neural symbolic regression method, named Neural Symbolic Regression with Hypothesis (NSRwH)
Our experiments demonstrate that the proposed conditioned deep learning model outperforms its unconditioned counterparts in terms of accuracy.
arXiv Detail & Related papers (2023-04-20T14:20:48Z) - Bias-Variance Tradeoffs in Single-Sample Binary Gradient Estimators [100.58924375509659]
Straight-through (ST) estimator gained popularity due to its simplicity and efficiency.
Several techniques were proposed to improve over ST while keeping the same low computational complexity.
We conduct a theoretical analysis of Bias and Variance of these methods in order to understand tradeoffs and verify originally claimed properties.
arXiv Detail & Related papers (2021-10-07T15:16:07Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - SymbolicGPT: A Generative Transformer Model for Symbolic Regression [3.685455441300801]
We present SymbolicGPT, a novel transformer-based language model for symbolic regression.
We show that our model performs strongly compared to competing models with respect to the accuracy, running time, and data efficiency.
arXiv Detail & Related papers (2021-06-27T03:26:35Z) - Neural Symbolic Regression that Scales [58.45115548924735]
We introduce the first symbolic regression method that leverages large scale pre-training.
We procedurally generate an unbounded set of equations, and simultaneously pre-train a Transformer to predict the symbolic equation from a corresponding set of input-output-pairs.
arXiv Detail & Related papers (2021-06-11T14:35:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.