論文の概要: Curse of High Dimensionality Issue in Transformer for Long-context Modeling
- arxiv url: http://arxiv.org/abs/2505.22107v3
- Date: Tue, 10 Jun 2025 01:14:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 12:52:34.241788
- Title: Curse of High Dimensionality Issue in Transformer for Long-context Modeling
- Title(参考訳): 長文モデリングのための変圧器の高次元問題曲線
- Authors: Shuhai Zhang, Zeng You, Yaofo Chen, Zhiquan Wen, Qianyue Wang, Zhijie Qiu, Yuanqing Li, Mingkui Tan,
- Abstract要約: 注意計算において重要でないトークンを集約することにより冗長性を低減するために,textitDynamic Group Attention (DGA)を提案する。
その結果,DGAは競争性能を維持しながら計算コストを大幅に削減できることがわかった。
- 参考スコア(独自算出の注目度): 31.257769500741006
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer-based large language models (LLMs) excel in natural language processing tasks by capturing long-range dependencies through self-attention mechanisms. However, long-context modeling faces significant computational inefficiencies due to \textit{redundant} attention computations: while attention weights are often \textit{sparse}, all tokens consume \textit{equal} computational resources. In this paper, we reformulate traditional probabilistic sequence modeling as a \textit{supervised learning task}, enabling the separation of relevant and irrelevant tokens and providing a clearer understanding of redundancy. Based on this reformulation, we theoretically analyze attention sparsity, revealing that only a few tokens significantly contribute to predictions. Building on this, we formulate attention optimization as a linear coding problem and propose a \textit{group coding strategy}, theoretically showing its ability to improve robustness against random noise and enhance learning efficiency. Motivated by this, we propose \textit{Dynamic Group Attention} (DGA), which leverages the group coding to explicitly reduce redundancy by aggregating less important tokens during attention computation. Empirical results show that our DGA significantly reduces computational costs while maintaining competitive performance.Code is available at https://github.com/bolixinyu/DynamicGroupAttention.
- Abstract(参考訳): トランスフォーマーベースの大規模言語モデル(LLM)は、自己認識機構を通じて長距離依存関係をキャプチャすることで自然言語処理タスクに優れる。
しかし、長コンテキストモデリングは、注意重みがしばしば \textit{sparse} であるのに対して、全てのトークンは \textit{equal} 計算資源を消費する。
本稿では,従来の確率論的シーケンスモデリングを「textit{supervised learning task」として再構成し,関連するトークンと無関係トークンの分離を可能にし,冗長性を明確に理解する。
この改定に基づいて、理論的に注意空間を解析し、いくつかのトークンだけが予測に大きく寄与することを明らかにする。
これに基づいて、線形符号化問題として注意最適化を定式化し、ランダムノイズに対するロバスト性の向上と学習効率の向上を理論的に示す「textit{group code strategy」を提案する。
そこで本研究では,注意計算において重要でないトークンを集約することにより,グループ符号化を活用して冗長性を明示的に低減する「textit{Dynamic Group Attention} (DGA)」を提案する。
実験の結果,我々のDGAは競争性能を維持しながら計算コストを著しく削減し,https://github.com/bolixinyu/DynamicGroupAttention.comでコードが公開されている。
関連論文リスト
- Token Reduction Should Go Beyond Efficiency in Generative Models -- From Vision, Language to Multimodality [29.531450446701175]
本稿では, トークン削減は, 大規模生成モデルの時代において, 従来の効率重視の役割を超越すべきであると主張する。
トークンの削減は、より深いマルチモーダル統合とアライメントを促進し、長い入力に対するコヒーレンスを維持し、トレーニングの安定性を高めることができると我々は主張する。
我々は、アルゴリズム設計、強化学習誘導トークン削減、文脈内学習のためのトークン最適化、より広範なMLおよび科学領域を含む将来的な方向性について概説する。
論文 参考訳(メタデータ) (2025-05-23T11:30:30Z) - Core Context Aware Transformers for Long Context Language Modeling [50.774702091154204]
高速な長文モデリングのためのCCAアテンションを提案する。
本手法は,学習過程における冗長性を低下させながら,コアコンテキストに自動的に焦点を合わせ,強化する。
提案手法は,既存の大規模言語モデルにおける自己注意モジュールを最小限の微調整コストで置き換えることができる。
論文 参考訳(メタデータ) (2024-12-17T01:54:08Z) - Anchor Attention, Small Cache: Code Generation with Large Language Models [15.94784908771546]
NLPの現在のプラクティスは、コード生成タスクにおいて、不正確な、あるいは幻覚を引き起こす可能性のある、スパースアテンションを使用することが多い。
本稿では,コンテキスト情報を抽出・圧縮するトークン・アンカー・アテンションを特徴とする新しいアプローチであるAnchorCoderを提案する。
モデルの性能の大部分を保ちながら、KVキャッシュの要求を大幅に削減できる(少なくとも70%)。
論文 参考訳(メタデータ) (2024-11-11T02:47:05Z) - RefreshKV: Updating Small KV Cache During Long-form Generation [54.00118604124301]
生成中の入力トークンのサブセットに対して、完全なコンテキストアテンションとアテンションを柔軟に交互に交互に切り替える新しい推論手法RefreshKVを提案する。
本手法をオフザシェルフ LLM に適用することにより,様々な長文生成タスクの性能を向上しつつ,エビクションベースの手法に匹敵する高速化を実現する。
論文 参考訳(メタデータ) (2024-11-08T18:57:07Z) - RecurFormer: Not All Transformer Heads Need Self-Attention [14.331807060659902]
変換器をベースとした大規模言語モデル(LLM)は複雑な言語パターンをモデル化する上で優れているが、推論時にかなりの計算コストに直面している。
本稿では,リニアリカレントニューラルネットワークに注意を向ける新しいアーキテクチャであるRecurFormerを提案する。
論文 参考訳(メタデータ) (2024-10-10T15:24:12Z) - A Training-free Sub-quadratic Cost Transformer Model Serving Framework With Hierarchically Pruned Attention [43.211427581302715]
大規模言語モデルにおける文脈長を増大させるため,HiP(Hierarchically Pruned Attention)を提案する。
HiPは注意機構の時間的複雑さを$O(T log T)$に減らし、空間的複雑さを$O(T)$に減らし、$T$はシーケンス長である。
HiPは, 劣化を最小限に抑えつつ, プリフィルとデコードの両方のレイテンシとメモリ使用率を著しく低減することを示す。
論文 参考訳(メタデータ) (2024-06-14T08:32:45Z) - Semantic Equitable Clustering: A Simple and Effective Strategy for Clustering Vision Tokens [57.37893387775829]
textbfSemantic textbfEquitable textbfClustering (SEC) という,高速かつバランスの取れたクラスタリング手法を導入する。
SECは、グローバルなセマンティックな関連性に基づいてトークンを効率的かつ直接的な方法でクラスタ化する。
視覚言語コネクタとして機能する汎用視覚バックボーンであるSECViTを提案する。
論文 参考訳(メタデータ) (2024-05-22T04:49:00Z) - Neural Data-to-Text Generation via Jointly Learning the Segmentation and
Correspondence [48.765579605145454]
対象のテキストを断片単位に明示的に分割し,それらのデータ対応と整合させることを提案する。
結果として生じるアーキテクチャは、ニューラルアテンションモデルと同じ表現力を維持している。
E2EとWebNLGのベンチマークでは、提案モデルがニューラルアテンションよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2020-05-03T14:28:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。