論文の概要: RefreshKV: Updating Small KV Cache During Long-form Generation
- arxiv url: http://arxiv.org/abs/2411.05787v2
- Date: Mon, 03 Mar 2025 18:23:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:10:40.997950
- Title: RefreshKV: Updating Small KV Cache During Long-form Generation
- Title(参考訳): RefreshKV: 長期生成時の小さなKVキャッシュの更新
- Authors: Fangyuan Xu, Tanya Goyal, Eunsol Choi,
- Abstract要約: 生成中の入力トークンのサブセットに対して、完全なコンテキストアテンションとアテンションを柔軟に交互に交互に切り替える新しい推論手法RefreshKVを提案する。
本手法をオフザシェルフ LLM に適用することにより,様々な長文生成タスクの性能を向上しつつ,エビクションベースの手法に匹敵する高速化を実現する。
- 参考スコア(独自算出の注目度): 54.00118604124301
- License:
- Abstract: Generating long sequences of tokens given a long-context input is a very compute-intensive inference scenario for large language models (LLMs). One prominent inference speed-up approach is to construct a smaller key-value (KV) cache, relieving LLMs from computing attention over a long sequence of tokens. While such methods work well to generate short sequences, their performance degrades rapidly for long-form generation. Most KV compression happens once, prematurely removing tokens that can be useful later in the generation. We propose a new inference method, RefreshKV, that flexibly alternates between full context attention and attention over a subset of input tokens during generation. After each full attention step, we update the smaller KV cache based on the attention pattern over the entire input. Applying our method to off-the-shelf LLMs achieves comparable speedup to eviction-based methods while improving performance for various long-form generation tasks. Lastly, we show that continued pretraining with our inference setting brings further gains in performance.
- Abstract(参考訳): 長いコンテキスト入力を与えられたトークンの長いシーケンスを生成することは、大規模言語モデル(LLM)にとって非常に計算集約的な推論シナリオである。
1つの顕著な推論スピードアップアプローチは、より小さなキー値(KV)キャッシュを構築することである。
このような手法は短いシーケンスを生成するのにうまく機能するが、長文生成では性能が急速に低下する。
ほとんどのKV圧縮は1回だけ発生し、早期にトークンを削除し、世代が遅くなると有効になる。
生成中の入力トークンのサブセットに対して、完全なコンテキストアテンションとアテンションを柔軟に交互に交互に切り替える新しい推論手法RefreshKVを提案する。
各注意ステップの後に、入力全体に対する注意パターンに基づいて、より小さなKVキャッシュを更新する。
本手法をオフザシェルフ LLM に適用することにより,様々な長文生成タスクの性能を向上しつつ,エビクションベースの手法に匹敵する高速化を実現する。
最後に、推論設定による事前トレーニングがパフォーマンスをさらに向上させることを示す。
関連論文リスト
- Activation-aware Probe-Query: Effective Key-Value Retrieval for Long-Context LLMs Inference [56.71209737306054]
我々は,プローブ-textbfQuery を動的に決定し,関連する textbfKV ペアを推論するために利用する,トレーニングフリーの textbfActivation-aware アプローチである textbfActQKV を提案する。
Long-Bench と $infty$ Benchmarks の実験では、競合する推論品質とリソース効率を備えた最先端のパフォーマンスが実証されている。
論文 参考訳(メタデータ) (2025-02-19T08:50:44Z) - Tactic: Adaptive Sparse Attention with Clustering and Distribution Fitting for Long-Context LLMs [10.52833484759311]
本稿では,空間適応型かつキャリブレーションフリーなスパースアテンション機構であるTacticを提案する。
固定されたトークン予算ではなく、累積的な注意スコアに基づいてトークンを動的に選択する。
我々は、Tacticが既存のスパースアテンションアルゴリズムより優れており、精度が良く、7.29倍のデコードアテンションスピードアップを実現していることを示す。
論文 参考訳(メタデータ) (2025-02-17T08:39:43Z) - AttentionPredictor: Temporal Pattern Matters for Efficient LLM Inference [51.1972443343829]
本稿では,最初の学習に基づくクリティカルトークン識別手法であるAttentionPredictorを提案する。
注意予測器は、無視可能なメモリを消費しながら、注意スコアを正確に予測する。
また、トークン時間オーバーヘッドを隠蔽してデコードステージを高速化する、クロストークンクリティカルキャッシュプリフェッチフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-06T13:41:46Z) - Core Context Aware Attention for Long Context Language Modeling [50.774702091154204]
本稿では,CCA(Core Context Aware)アテンションを効果的に長距離コンテキストモデリングのためのプラグイン・アンド・プレイとして提案する。
CCA-Attentionは、計算効率と長文モデリング能力の観点から、最先端モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2024-12-17T01:54:08Z) - Squeezed Attention: Accelerating Long Context Length LLM Inference [64.11145320159126]
本稿では,入力プロンプトの大部分を固定したLLMアプリケーションを高速化する機構として,Squeezed Attentionを提案する。
K-meansクラスタリングをオフラインで使用して、セマンティックな類似性に基づいて、固定されたコンテキストのキーをグループ化し、各クラスタを単一のセントロイド値で表現します。
そして、固定された文脈から重要なキーのみを用いて正確な注意を計算し、帯域幅と計算コストを削減する。
論文 参考訳(メタデータ) (2024-11-14T18:54:19Z) - TokenSelect: Efficient Long-Context Inference and Length Extrapolation for LLMs via Dynamic Token-Level KV Cache Selection [23.20856449846164]
TokenSelectは、モデルに依存しない、訓練のない、効率的で正確な長文推論手法である。
TokenSelectの総合評価では、注意点の最大23.84倍、エンドツーエンドのレイテンシの最大2.28倍の高速化が示されている。
論文 参考訳(メタデータ) (2024-11-05T07:56:24Z) - CritiPrefill: A Segment-wise Criticality-based Approach for Prefilling Acceleration in LLMs [8.649971923487835]
本稿では,CritiPrefillを提案する。
CritiPrefillは、入力シーケンスのクエリとKVキャッシュをセグメントとブロックに分割する。
複数の長コンテキストデータセットの大規模な評価では、Llama3-8Bで2.7倍、Yi-9Bで3.0倍、単一のA100 GPUで128Kのコンテキスト長を持つ。
論文 参考訳(メタデータ) (2024-09-19T06:09:56Z) - Efficient Streaming Language Models with Attention Sinks [72.20260088848987]
StreamingLLMは、大規模言語モデルが微調整なしで無限のシーケンス長に一般化できる効率的なフレームワークである。
StreamingLLMはLlama-2, MPT, Falcon, Pythiaを最大400万のトークンで安定かつ効率的な言語モデリングを実現できることを示す。
論文 参考訳(メタデータ) (2023-09-29T17:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。