Flexible Tool Selection through Low-dimensional Attribute Alignment of Vision and Language
- URL: http://arxiv.org/abs/2505.22146v2
- Date: Tue, 10 Jun 2025 05:15:58 GMT
- Title: Flexible Tool Selection through Low-dimensional Attribute Alignment of Vision and Language
- Authors: Guangfu Hao, Haojie Wen, Liangxuna Guo, Yang Chen, Yanchao Bi, Shan Yu,
- Abstract summary: Flexible tool selection reflects a complex cognitive ability that distinguishes humans from other species.<n>We developed a framework using low-dimensional attribute representations to bridge visual tool perception and linguistic task understanding.
- Score: 9.378472434981088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Flexible tool selection reflects a complex cognitive ability that distinguishes humans from other species, yet computational models that capture this ability remain underdeveloped. We developed a framework using low-dimensional attribute representations to bridge visual tool perception and linguistic task understanding. We constructed a comprehensive dataset (ToolNet) containing 115 common tools labeled with 13 carefully designed attributes spanning physical, functional, and psychological properties, paired with natural language scenarios describing tool usage. Visual encoders (ResNet or ViT) extract attributes from tool images while fine-tuned language models (GPT-2, LLaMA, DeepSeek) derive required attributes from task descriptions. Our approach achieves 74% accuracy in tool selection tasks-significantly outperforming direct tool matching (20%) and smaller multimodal models (21%-58%), while approaching performance of much larger models like GPT-4o (73%) with substantially fewer parameters. Ablation studies revealed that manipulation-related attributes (graspability, hand-relatedness, elongation) consistently prove most critical across modalities. This work provides a parameter-efficient, interpretable solution that mimics human-like tool cognition, advancing both cognitive science understanding and practical applications in tool selection tasks.
Related papers
- Tool Graph Retriever: Exploring Dependency Graph-based Tool Retrieval for Large Language Models [43.50789219459378]
We propose Tool Graph Retriever (TGR), which exploits the dependencies among tools to learn better tool representations for retrieval.<n>First, we construct a dataset termed TDI300K to train a discriminator for identifying tool dependencies.<n>Then, we represent all candidate tools as a tool dependency graph and use graph convolution to integrate the dependencies into their representations.
arXiv Detail & Related papers (2025-08-07T08:36:26Z) - Advancing Tool-Augmented Large Language Models via Meta-Verification and Reflection Learning [63.2198957755528]
We propose Tool-MVR, a novel Tool-Augmented LLM that achieves comprehensive System 2 reasoning through two key innovations.<n>Specifically, we first introduce Multi-Agent Meta-Verification (MAMV), a systematic pipeline that rigorously validates APIs, queries, and reasoning trajectories.<n>Second, we propose Exploration-based Reflection Learning (EXPLORE), which enhances tool reflection capabilities by leveraging tool feedback.
arXiv Detail & Related papers (2025-06-05T04:35:49Z) - VisualToolAgent (VisTA): A Reinforcement Learning Framework for Visual Tool Selection [47.259066449806866]
VisTA is a new reinforcement learning framework that empowers visual agents to dynamically explore, select, and combine tools from a diverse library based on empirical performance.<n>We show that VisTA achieves substantial performance gains over training-free baselines.<n>These results highlight VisTA's ability to enhance generalization, adaptively utilize diverse tools, and pave the way for flexible, experience-driven visual reasoning systems.
arXiv Detail & Related papers (2025-05-26T17:59:17Z) - ToolSpectrum : Towards Personalized Tool Utilization for Large Language Models [48.276461194773354]
We introduce ToolSpectrum, a benchmark designed to evaluate large language models' capabilities in personalized tool utilization.<n>We formalize two key dimensions of personalization, user profile and environmental factors, and analyze their individual and synergistic impacts on tool utilization.<n>Our findings underscore the necessity of context-aware personalization in tool-augmented LLMs and reveal critical limitations for current models.
arXiv Detail & Related papers (2025-05-19T14:30:46Z) - Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger [49.81945268343162]
We propose MeCo, an adaptive decision-making strategy for external tool use.<n>MeCo captures high-level cognitive signals in the representation space, guiding when to invoke tools.<n>Our experiments show that MeCo accurately detects LLMs' internal cognitive signals and significantly improves tool-use decision-making.
arXiv Detail & Related papers (2025-02-18T15:45:01Z) - SMART: Self-Aware Agent for Tool Overuse Mitigation [58.748554080273585]
Current Large Language Model (LLM) agents demonstrate strong reasoning and tool use capabilities, but often lack self-awareness.<n>This imbalance leads to Tool Overuse, where models unnecessarily rely on external tools for tasks with parametric knowledge.<n>We introduce SMART (Strategic Model-Aware Reasoning with Tools), a paradigm that enhances an agent's self-awareness to optimize task handling and reduce tool overuse.
arXiv Detail & Related papers (2025-02-17T04:50:37Z) - CITI: Enhancing Tool Utilizing Ability in Large Language Models without Sacrificing General Performance [17.723293304671877]
We propose a Component-based Tool-utilizing ability Injection method (CITI)
According to the gradient-based importance score of different components, CITI alleviates the capability conflicts caused by fine-tuning process.
Experimental results demonstrate that our approach achieves outstanding performance across a range of evaluation metrics.
arXiv Detail & Related papers (2024-09-20T04:06:28Z) - MetaTool: Facilitating Large Language Models to Master Tools with Meta-task Augmentation [25.360660222418183]
We present MetaTool, a novel tool learning methodology designed to generalize across any reusable toolset.
By incorporating meta-task data into task-oriented training, our method significantly enhances the performance of open-source Large Language Models.
arXiv Detail & Related papers (2024-07-15T10:15:41Z) - TOOLVERIFIER: Generalization to New Tools via Self-Verification [69.85190990517184]
We introduce a self-verification method which distinguishes between close candidates by self-asking contrastive questions during tool selection.
Experiments on 4 tasks from the ToolBench benchmark, consisting of 17 unseen tools, demonstrate an average improvement of 22% over few-shot baselines.
arXiv Detail & Related papers (2024-02-21T22:41:38Z) - ControlLLM: Augment Language Models with Tools by Searching on Graphs [97.62758830255002]
We present ControlLLM, a novel framework that enables large language models (LLMs) to utilize multi-modal tools for solving real-world tasks.
Our framework comprises three key components: (1) a textittask decomposer that breaks down a complex task into clear subtasks with well-defined inputs and outputs; (2) a textitThoughts-on-Graph (ToG) paradigm that searches the optimal solution path on a pre-built tool graph; and (3) an textitexecution engine with a rich toolbox that interprets the solution path and runs the
arXiv Detail & Related papers (2023-10-26T21:57:21Z) - ToolAlpaca: Generalized Tool Learning for Language Models with 3000
Simulated Cases [49.7798644853604]
This paper introduces ToolAlpaca, a framework designed to automatically generate a diverse tool-use corpus and learn generalized tool-use abilities on compact language models.
We show that ToolAlpaca achieves effective generalized tool-use capabilities comparable to those of extremely large language models like GPT-3.5.
arXiv Detail & Related papers (2023-06-08T15:46:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.