Stratified Selective Sampling for Instruction Tuning with Dedicated Scoring Strategy
- URL: http://arxiv.org/abs/2505.22157v1
- Date: Wed, 28 May 2025 09:22:25 GMT
- Title: Stratified Selective Sampling for Instruction Tuning with Dedicated Scoring Strategy
- Authors: Paramita Mirza, Lucas Weber, Fabian Küch,
- Abstract summary: We show that data selection can be both -- efficient and universal -- by using a multi-step pipeline.<n>We use task-based categorization to control the composition of our final data.<n>This integrated strategy enables high-performance fine-tuning with minimal overhead.
- Score: 1.8666174950012007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work shows that post-training datasets for LLMs can be substantially downsampled without noticeably deteriorating performance. However, data selection often incurs high computational costs or is limited to narrow domains. In this paper, we demonstrate that data selection can be both -- efficient and universal -- by using a multi-step pipeline in which we efficiently bin data points into groups, estimate quality using specialized models, and score difficulty with a robust, lightweight method. Task-based categorization allows us to control the composition of our final data -- crucial for finetuning multi-purpose models. To guarantee diversity, we improve upon previous work using embedding models and a clustering algorithm. This integrated strategy enables high-performance fine-tuning with minimal overhead.
Related papers
- SPaRFT: Self-Paced Reinforcement Fine-Tuning for Large Language Models [51.74498855100541]
Large language models (LLMs) have shown strong reasoning capabilities when fine-tuned with reinforcement learning (RL)<n>We propose textbfSPaRFT, a self-paced learning framework that enables efficient learning based on the capability of the model being trained.
arXiv Detail & Related papers (2025-08-07T03:50:48Z) - Add-One-In: Incremental Sample Selection for Large Language Models via a Choice-Based Greedy Paradigm [41.4789135538612]
This paper introduces a novel choice-based sample selection framework that shifts the focus from evaluating individual sample quality to comparing the contribution value of different samples.<n>Thanks to the advanced language understanding capabilities of Large Language Models (LLMs), we utilize LLMs to evaluate the value of each option during the selection process.
arXiv Detail & Related papers (2025-03-04T07:32:41Z) - Adaptive Dataset Quantization [2.0105434963031463]
We introduce a versatile framework for dataset compression, namely Adaptive dataset Quantization (ADQ)<n>We propose a novel adaptive sampling strategy through the evaluation of generated bins' representativeness score, diversity score and importance score.<n>Our method not only exhibits superior generalization capability across different architectures, but also attains state-of-the-art results, surpassing DQ by average 3% on various datasets.
arXiv Detail & Related papers (2024-12-22T07:08:29Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - Adapt-$\infty$: Scalable Continual Multimodal Instruction Tuning via Dynamic Data Selection [89.42023974249122]
Adapt-$infty$ is a new multi-way and adaptive data selection approach for lifelong instruction tuning.<n>We construct pseudo-skill clusters by grouping gradient-based sample vectors.<n>We select the best-performing data selector for each skill cluster from a pool of selector experts.<n>This data selector samples a subset of the most important samples from each skill cluster for training.
arXiv Detail & Related papers (2024-10-14T15:48:09Z) - Dataset Quantization with Active Learning based Adaptive Sampling [11.157462442942775]
We show that maintaining performance is feasible even with uneven sample distributions.
We propose a novel active learning based adaptive sampling strategy to optimize the sample selection.
Our approach outperforms the state-of-the-art dataset compression methods.
arXiv Detail & Related papers (2024-07-09T23:09:18Z) - Data curation via joint example selection further accelerates multimodal learning [3.329535792151987]
We show that jointly selecting batches of data is more effective for learning than selecting examples independently.
We derive a simple and tractable algorithm for selecting such batches, which significantly accelerate training beyond individually-prioritized data points.
arXiv Detail & Related papers (2024-06-25T16:52:37Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - Low Budget Active Learning via Wasserstein Distance: An Integer
Programming Approach [81.19737119343438]
Active learning is the process of training a model with limited labeled data by selecting a core subset of an unlabeled data pool to label.
We propose a new integer optimization problem for selecting a core set that minimizes the discrete Wasserstein distance from the unlabeled pool.
Our strategy requires high-quality latent features which we obtain by unsupervised learning on the unlabeled pool.
arXiv Detail & Related papers (2021-06-05T21:25:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.