Unifying Continuous and Discrete Text Diffusion with Non-simultaneous Diffusion Processes
- URL: http://arxiv.org/abs/2505.22165v1
- Date: Wed, 28 May 2025 09:28:52 GMT
- Title: Unifying Continuous and Discrete Text Diffusion with Non-simultaneous Diffusion Processes
- Authors: Bocheng Li, Zhujin Gao, Linli Xu,
- Abstract summary: NeoDiff is a novel diffusion model that integrates the strengths of both discrete and continuous approaches.<n>Our approach unifies the theories of discrete and continuous diffusion models, offering a more principled and effective framework for text generation.
- Score: 9.29387855908007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have emerged as a promising approach for text generation, with recent works falling into two main categories: discrete and continuous diffusion models. Discrete diffusion models apply token corruption independently using categorical distributions, allowing for different diffusion progress across tokens but lacking fine-grained control. Continuous diffusion models map tokens to continuous spaces and apply fine-grained noise, but the diffusion progress is uniform across tokens, limiting their ability to capture semantic nuances. To address these limitations, we propose \textbf{\underline{N}}on-simultan\textbf{\underline{e}}ous C\textbf{\underline{o}}ntinuous \textbf{\underline{Diff}}usion Models (NeoDiff), a novel diffusion model that integrates the strengths of both discrete and continuous approaches. NeoDiff introduces a Poisson diffusion process for the forward process, enabling a flexible and fine-grained noising paradigm, and employs a time predictor for the reverse process to adaptively modulate the denoising progress based on token semantics. Furthermore, NeoDiff utilizes an optimized schedule for inference to ensure more precise noise control and improved performance. Our approach unifies the theories of discrete and continuous diffusion models, offering a more principled and effective framework for text generation. Experimental results on several text generation tasks demonstrate NeoDiff's superior performance compared to baselines of non-autoregressive continuous and discrete diffusion models, iterative-based methods and autoregressive diffusion-based methods. These results highlight NeoDiff's potential as a powerful tool for generating high-quality text and advancing the field of diffusion-based text generation.
Related papers
- Flexible-length Text Infilling for Discrete Diffusion Models [0.8595835526753521]
We introduce textbfDDOT (textbfDiscrete textbfDiffusion with textbfOptimal textbfTransport Position Coupling), the first discrete diffusion model to overcome this challenge.<n>DDOT jointly denoises token values and token positions, employing a novel sample-level Optimal Transport (OT) coupling.<n>Experiments on text infilling benchmarks such as One-Billion-Word and Yelp demonstrate that DDOT outperforms naive diffusion baselines.
arXiv Detail & Related papers (2025-06-16T15:02:12Z) - Constrained Discrete Diffusion [61.81569616239755]
This paper introduces Constrained Discrete Diffusion (CDD), a novel integration of differentiable constraint optimization within the diffusion process.<n>CDD directly imposes constraints into the discrete diffusion sampling process, resulting in a training-free and effective approach.
arXiv Detail & Related papers (2025-03-12T19:48:12Z) - Generalized Interpolating Discrete Diffusion [65.74168524007484]
Masked diffusion is a popular choice due to its simplicity and effectiveness.<n>We derive the theoretical backbone of a family of general interpolating discrete diffusion processes.<n>Exploiting GIDD's flexibility, we explore a hybrid approach combining masking and uniform noise.
arXiv Detail & Related papers (2025-03-06T14:30:55Z) - Continuous Diffusion Model for Language Modeling [57.396578974401734]
Existing continuous diffusion models for discrete data have limited performance compared to discrete approaches.<n>We propose a continuous diffusion model for language modeling that incorporates the geometry of the underlying categorical distribution.
arXiv Detail & Related papers (2025-02-17T08:54:29Z) - RDPM: Solve Diffusion Probabilistic Models via Recurrent Token Prediction [17.005198258689035]
Diffusion Probabilistic Models (DPMs) have emerged as the de facto approach for high-fidelity image synthesis.<n>We introduce a novel generative framework, the Recurrent Diffusion Probabilistic Model (RDPM), which enhances the diffusion process through a recurrent token prediction mechanism.
arXiv Detail & Related papers (2024-12-24T12:28:19Z) - Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion [61.03681839276652]
Diffusion Forcing is a new training paradigm where a diffusion model is trained to denoise a set of tokens with independent per-token noise levels.<n>We apply Diffusion Forcing to sequence generative modeling by training a causal next-token prediction model to generate one or several future tokens.
arXiv Detail & Related papers (2024-07-01T15:43:25Z) - Discrete Diffusion Language Model for Efficient Text Summarization [19.267738861590487]
We introduce a novel semantic-aware noising process that enables Transformer backbones to handle long sequences effectively.<n>Our approaches achieve state-of-the-art performance on three benchmark summarization datasets: Gigaword, CNN/DailyMail, and Arxiv.
arXiv Detail & Related papers (2024-06-25T09:55:22Z) - PLANNER: Generating Diversified Paragraph via Latent Language Diffusion Model [37.2192243883707]
We propose PLANNER, a model that combines latent semantic diffusion with autoregressive generation to generate fluent text.
Results on semantic generation, text completion and summarization show its effectiveness in generating high-quality long-form text.
arXiv Detail & Related papers (2023-06-05T01:36:39Z) - TESS: Text-to-Text Self-Conditioned Simplex Diffusion [56.881170312435444]
Text-to-text Self-conditioned Simplex Diffusion employs a new form of self-conditioning, and applies the diffusion process on the logit simplex space rather than the learned embedding space.
We demonstrate that TESS outperforms state-of-the-art non-autoregressive models, requires fewer diffusion steps with minimal drop in performance, and is competitive with pretrained autoregressive sequence-to-sequence models.
arXiv Detail & Related papers (2023-05-15T06:33:45Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LM is a novel diffusion model for language modeling, inspired by linguistic features in languages.
Specifically, we design a linguistic-informed forward process which adds corruptions to the text through strategically soft-masking to better noise the textual data.
We demonstrate that our Masked-Diffuse LM can achieve better generation quality than the state-of-the-art diffusion models with better efficiency.
arXiv Detail & Related papers (2023-04-10T17:58:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.