Flexible-length Text Infilling for Discrete Diffusion Models
- URL: http://arxiv.org/abs/2506.13579v1
- Date: Mon, 16 Jun 2025 15:02:12 GMT
- Title: Flexible-length Text Infilling for Discrete Diffusion Models
- Authors: Andrew Zhang, Anushka Sivakumar, Chiawei Tang, Chris Thomas,
- Abstract summary: We introduce textbfDDOT (textbfDiscrete textbfDiffusion with textbfOptimal textbfTransport Position Coupling), the first discrete diffusion model to overcome this challenge.<n>DDOT jointly denoises token values and token positions, employing a novel sample-level Optimal Transport (OT) coupling.<n>Experiments on text infilling benchmarks such as One-Billion-Word and Yelp demonstrate that DDOT outperforms naive diffusion baselines.
- Score: 0.8595835526753521
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discrete diffusion models are a new class of text generators that offer advantages such as bidirectional context use, parallelizable generation, and flexible prompting compared to autoregressive models. However, a critical limitation of discrete diffusion models is their inability to perform flexible-length or flexible-position text infilling without access to ground-truth positional data. We introduce \textbf{DDOT} (\textbf{D}iscrete \textbf{D}iffusion with \textbf{O}ptimal \textbf{T}ransport Position Coupling), the first discrete diffusion model to overcome this challenge. DDOT jointly denoises token values and token positions, employing a novel sample-level Optimal Transport (OT) coupling. This coupling preserves relative token ordering while dynamically adjusting the positions and length of infilled segments, a capability previously missing in text diffusion. Our method is orthogonal to existing discrete text diffusion methods and is compatible with various pretrained text denoisers. Extensive experiments on text infilling benchmarks such as One-Billion-Word and Yelp demonstrate that DDOT outperforms naive diffusion baselines. Furthermore, DDOT achieves performance on par with state-of-the-art non-autoregressive models and enables significant improvements in training efficiency and flexibility.
Related papers
- Unifying Continuous and Discrete Text Diffusion with Non-simultaneous Diffusion Processes [9.29387855908007]
NeoDiff is a novel diffusion model that integrates the strengths of both discrete and continuous approaches.<n>Our approach unifies the theories of discrete and continuous diffusion models, offering a more principled and effective framework for text generation.
arXiv Detail & Related papers (2025-05-28T09:28:52Z) - Constrained Discrete Diffusion [61.81569616239755]
This paper introduces Constrained Discrete Diffusion (CDD), a novel integration of differentiable constraint optimization within the diffusion process.<n>CDD directly imposes constraints into the discrete diffusion sampling process, resulting in a training-free and effective approach.
arXiv Detail & Related papers (2025-03-12T19:48:12Z) - Generalized Interpolating Discrete Diffusion [65.74168524007484]
Masked diffusion is a popular choice due to its simplicity and effectiveness.<n>We generalize a new family of general interpolating discrete diffusion (GIDD) which offers greater flexibility in the design of the noising processes.<n>Exploiting GIDD's flexibility, we explore a hybrid approach combining masking and uniform noise, leading to improved sample quality.
arXiv Detail & Related papers (2025-03-06T14:30:55Z) - Segment-Level Diffusion: A Framework for Controllable Long-Form Generation with Diffusion Language Models [12.446047799880587]
Token-level diffusion doesn't model word-order dependencies explicitly.<n>Passage-level diffusion struggles with learning robust representations for long-form text.<n>We propose Segment-Level Diffusion, a framework that enhances diffusion-based text generation.
arXiv Detail & Related papers (2024-12-15T22:47:44Z) - LaDiC: Are Diffusion Models Really Inferior to Autoregressive Counterparts for Image-to-Text Generation? [10.72249123249003]
We revisit diffusion models, highlighting their capacity for holistic context modeling and parallel decoding.
We introduce a novel architecture, LaDiC, which utilizes a split BERT to create a dedicated latent space for captions.
LaDiC achieves state-of-the-art performance for diffusion-based methods on the MS dataset with 38.2 BLEU@4 and 126.2 CIDEr.
arXiv Detail & Related papers (2024-04-16T17:47:16Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
We propose score entropy as a novel loss that naturally extends score matching to discrete spaces.
We test our Score Entropy Discrete Diffusion models on standard language modeling tasks.
arXiv Detail & Related papers (2023-10-25T17:59:12Z) - PLANNER: Generating Diversified Paragraph via Latent Language Diffusion Model [37.2192243883707]
We propose PLANNER, a model that combines latent semantic diffusion with autoregressive generation to generate fluent text.
Results on semantic generation, text completion and summarization show its effectiveness in generating high-quality long-form text.
arXiv Detail & Related papers (2023-06-05T01:36:39Z) - TESS: Text-to-Text Self-Conditioned Simplex Diffusion [56.881170312435444]
Text-to-text Self-conditioned Simplex Diffusion employs a new form of self-conditioning, and applies the diffusion process on the logit simplex space rather than the learned embedding space.
We demonstrate that TESS outperforms state-of-the-art non-autoregressive models, requires fewer diffusion steps with minimal drop in performance, and is competitive with pretrained autoregressive sequence-to-sequence models.
arXiv Detail & Related papers (2023-05-15T06:33:45Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LM is a novel diffusion model for language modeling, inspired by linguistic features in languages.
Specifically, we design a linguistic-informed forward process which adds corruptions to the text through strategically soft-masking to better noise the textual data.
We demonstrate that our Masked-Diffuse LM can achieve better generation quality than the state-of-the-art diffusion models with better efficiency.
arXiv Detail & Related papers (2023-04-10T17:58:42Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.