Advances in Position-Momentum Entanglement: A Versatile Tool for Quantum Technologies
- URL: http://arxiv.org/abs/2505.22265v1
- Date: Wed, 28 May 2025 11:51:21 GMT
- Title: Advances in Position-Momentum Entanglement: A Versatile Tool for Quantum Technologies
- Authors: Satyajeet Patil, Sebastian Töpfer, Rajshree Swarnkar, Sergio Tovar-Perez, Jonas Moos, Jorge Fuenzalida, Markus Gräfe,
- Abstract summary: Position-momentum entanglement is a versatile high-dimensional resource in quantum optics.<n>From fundamental tests of reality to application in quantum technologies, spatial entanglement has had an increasing growth in recent years.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Position-momentum entanglement is a versatile high-dimensional resource in quantum optics. From fundamental tests of reality, to application in quantum technologies, spatial entanglement has had an increasing growth in recent years. In this review, we explore these advances, starting from the generation of spatial entanglement, followed by the different types of measurements for quantifying the entanglement, and finishing with different quantum-based applications. We conclude the review with a discussion and future perspectives on the field.
Related papers
- A Survey of Quantum Transformers: Architectures, Challenges and Outlooks [82.4736481748099]
Quantum Transformers integrate the representational power of classical Transformers with the computational advantages of quantum computing.<n>Since 2022, research in this area has rapidly expanded, giving rise to diverse technical paradigms and early applications.<n>This paper presents the first comprehensive, systematic, and in-depth survey of quantum Transformer models.
arXiv Detail & Related papers (2025-04-04T05:40:18Z) - Quantum Information Processing, Sensing and Communications: Their Myths, Realities and Futures [61.25494706587422]
The state-of-the-art, knowledge gaps and future evolution of quantum machine learning are discussed.<n>We conclude with a set of promising future research ideas in the field of ultimately secure quantum communications.
arXiv Detail & Related papers (2024-12-01T22:28:02Z) - Quantum metaphotonics: recent advances and perspective [0.0]
Quantum metaphotonics has emerged as a cutting-edge subfield of meta-optics.
It holds a great potential for the miniaturization of current bulky quantum optical elements.
arXiv Detail & Related papers (2024-01-30T05:44:26Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum optimal control in quantum technologies. Strategic report on
current status, visions and goals for research in Europe [0.0]
Quantum optimal control is a toolbox for devising and implementing the shapes of external fields that accomplish given tasks in the operation of a quantum device.
Recent progress in our understanding of the controllability of open quantum systems and in the development and application of quantum control techniques to quantum technologies are reviewed.
arXiv Detail & Related papers (2022-05-24T14:42:05Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
We cover the use of deep learning and kernel methods in supervised, unsupervised, and reinforcement learning algorithms.
We discuss more specialized topics such as differentiable programming, generative models, statistical approach to machine learning, and quantum machine learning.
arXiv Detail & Related papers (2022-04-08T17:48:59Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Testing the foundations of quantum physics in space Interferometric and
non-interferometric tests with Large Particles [0.0]
We focus on the promises coming from the combination of quantum technologies and space science to test the foundations of quantum physics.
In particular, we survey the field of mesoscopic superpositions of nanoparticles and the potential of interferometric and non-interferometric experiments in space.
We offer an ab-initio estimate of the potential of space-based interferometry with some of the largest systems ever considered and show that there is room for tests of quantum mechanics at an unprecedented level of detail.
arXiv Detail & Related papers (2021-06-09T19:28:49Z) - Quantum information [0.0]
This article reviews the extraordinary features of quantum information predicted by the quantum formalism.
The development of modern quantum technologies have opened new horizons in quantum physics that can potentially affect various areas of our live.
arXiv Detail & Related papers (2021-03-13T13:03:48Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Photonic Quantum Metrology [0.0]
The aim of this research field is the estimation of unknown parameters exploiting quantum resources.
We focus on the application of photonic technology for this task, with particular attention to phase estimation.
arXiv Detail & Related papers (2020-03-12T14:37:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.