論文の概要: DETAM: Defending LLMs Against Jailbreak Attacks via Targeted Attention Modification
- arxiv url: http://arxiv.org/abs/2504.13562v1
- Date: Fri, 18 Apr 2025 09:02:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 16:34:23.99719
- Title: DETAM: Defending LLMs Against Jailbreak Attacks via Targeted Attention Modification
- Title(参考訳): DETAM: ターゲットの注意修正による脱獄攻撃に対するLLMの防御
- Authors: Yu Li, Han Jiang, Zhihua Wei,
- Abstract要約: 我々は,LDMのジェイルブレイク攻撃に対する防御能力を向上する,微調整不要な防御手法であるDETAMを紹介する。
具体的には,ジェイルブレイク攻撃に敏感なアテンションヘッドを識別するために,防衛の成功と失敗の間のアテンションスコアの差を分析した。
推論中、攻撃トークンからの干渉を最小限に抑え、ユーザーの中核的な意図を強調するために注意を向ける。
- 参考スコア(独自算出の注目度): 18.006622965818856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the widespread adoption of Large Language Models (LLMs), jailbreak attacks have become an increasingly pressing safety concern. While safety-aligned LLMs can effectively defend against normal harmful queries, they remain vulnerable to such attacks. Existing defense methods primarily rely on fine-tuning or input modification, which often suffer from limited generalization and reduced utility. To address this, we introduce DETAM, a finetuning-free defense approach that improves the defensive capabilities against jailbreak attacks of LLMs via targeted attention modification. Specifically, we analyze the differences in attention scores between successful and unsuccessful defenses to identify the attention heads sensitive to jailbreak attacks. During inference, we reallocate attention to emphasize the user's core intention, minimizing interference from attack tokens. Our experimental results demonstrate that DETAM outperforms various baselines in jailbreak defense and exhibits robust generalization across different attacks and models, maintaining its effectiveness even on in-the-wild jailbreak data. Furthermore, in evaluating the model's utility, we incorporated over-defense datasets, which further validate the superior performance of our approach. The code will be released immediately upon acceptance.
- Abstract(参考訳): LLM(Large Language Models)が広く採用されているため、ジェイルブレイク攻撃はますます安全を懸念する声が高まっている。
安全性に配慮したLSMは、通常の有害なクエリに対して効果的に防御できるが、そのような攻撃には弱いままである。
既存の防御手法は主に微調整や入力の修正に依存しており、それはしばしば限定的な一般化と実用性低下に悩まされる。
そこで本研究では,LDMのジェイルブレイク攻撃に対する防御能力を,標的となる注意修正によって向上させる,細調整不要な防御手法であるDETAMを紹介する。
具体的には,ジェイルブレイク攻撃に敏感なアテンションヘッドを識別するために,防衛の成功と失敗の間のアテンションスコアの差を分析した。
推論中、攻撃トークンからの干渉を最小限に抑え、ユーザーの中核的な意図を強調するために注意を向ける。
実験の結果,DETAMはジェイルブレイク防御において様々なベースラインを上回り,様々な攻撃やモデルにまたがる堅牢な一般化を示す。
さらに、モデルの有用性を評価するために、過剰防御データセットを導入し、アプローチの優れた性能をさらに検証した。
コードは受理後すぐにリリースされる。
関連論文リスト
- LightDefense: A Lightweight Uncertainty-Driven Defense against Jailbreaks via Shifted Token Distribution [84.2846064139183]
大規模言語モデル(LLM)は、脱獄プロンプトからの脅威に直面している。
ホワイトボックスモデルを対象とした軽量防衛機構であるLightDefenseを提案する。
論文 参考訳(メタデータ) (2025-04-02T09:21:26Z) - SafeInt: Shielding Large Language Models from Jailbreak Attacks via Safety-Aware Representation Intervention [14.509085965856643]
Jailbreak攻撃は、望ましくない振る舞いを引き起こすために、大きな言語モデル(LLM)の脆弱性を利用する。
以前の防御は、しばしば効果と効率の両方を同時に達成できない。
セーフインベンション(SafeIntervention, セーフインベンション)は, 安全を意識した表現介入を通じて, LLMをジェイルブレイク攻撃から保護する新しい防御手法である。
論文 参考訳(メタデータ) (2025-02-21T17:12:35Z) - Adversarial Prompt Evaluation: Systematic Benchmarking of Guardrails Against Prompt Input Attacks on LLMs [44.023741610675266]
大規模言語モデル(LLM)は、ジェイルブレイクと呼ばれるプロンプトによって、安全でない振る舞いに操作できる。
すべての守備隊が、それらを整列するために使われる小さなジェイルブレイクのために、新たなアウト・オブ・ディストリビューション攻撃を処理できるわけではない。
評価のために利用可能な現在のデータセットに基づいて、単純なベースラインは、競争力のあるアウト・オブ・ディストリビューション性能を示すことができることを示す。
論文 参考訳(メタデータ) (2025-02-21T12:54:25Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
私たちは、jailbreak攻撃から防御するために設計された方法であるLayer-AdvPatcherを紹介します。
私たちは、自己拡張データセットを通じて、大規模言語モデル内の特定のレイヤにパッチを適用するために、未学習の戦略を使用します。
我々の枠組みは、脱獄攻撃の有害性と攻撃の成功率を減らす。
論文 参考訳(メタデータ) (2025-01-05T19:06:03Z) - Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models [59.25318174362368]
大規模言語モデル(LLM)におけるジェイルブレークは、LLMを騙して有害なテキストを生成するというセキュリティ上の問題である。
我々は7つの異なるジェイルブレイク法を詳細に分析し、不一致が不十分な観察サンプルから生じることを確認した。
安全境界内でのアクティベーションを適応的に制限する「textbfActivation Boundary Defense (ABD)」という新しい防衛法を提案する。
論文 参考訳(メタデータ) (2024-12-22T14:18:39Z) - Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment [97.38766396447369]
訓練時安全アライメントにもかかわらず、Multimodal Large Language Models (MLLM) はジェイルブレイク攻撃に対して脆弱である。
我々は,ジェイルブレイク攻撃に対する防御のために,制御復号化による安全な報酬モデルを活用する推論時防御フレームワークImmuneを提案する。
論文 参考訳(メタデータ) (2024-11-27T19:00:10Z) - MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [2.873719680183099]
本稿では,大規模言語モデル(LLM)における脱獄予防の重要性を論じる。
我々は,既存の最先端ガードレールの限界を超えるよう設計された,新しいガードレールアーキテクチャであるMoJEを紹介する。
MoJEは、モデル推論中に最小限の計算オーバーヘッドを維持しながら、ジェイルブレイク攻撃の検出に優れる。
論文 参考訳(メタデータ) (2024-09-26T10:12:19Z) - HSF: Defending against Jailbreak Attacks with Hidden State Filtering [14.031010511732008]
隠れ状態フィルタ(HSF)に基づくジェイルブレイク攻撃防御戦略を提案する。
HSFは、推論プロセスが始まる前に、モデルが相手の入力をプリエンプティブに識別し、拒否することを可能にする。
不正なユーザクエリに対する応答を最小限に抑えながら、Jailbreak攻撃の成功率を大幅に低下させる。
論文 参考訳(メタデータ) (2024-08-31T06:50:07Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
本稿では,ジェイルブレイク攻撃と防衛技術における依存関係の体系的解析について述べる。
包括的な、自動化された、論理的な3つのフレームワークを提案します。
このアンサンブル・ジェイルブレイク・アタックと防衛の枠組みは,既存の研究を著しく上回る結果となった。
論文 参考訳(メタデータ) (2024-06-06T07:24:41Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
大規模言語モデル(LLM)は、ジェイルブレイク攻撃に対して脆弱である。
既存のジェイルブレイク法は計算コストがかかる。
我々は、弱々しく強固な脱獄攻撃を提案する。
論文 参考訳(メタデータ) (2024-01-30T18:48:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。