Test-Time Immunization: A Universal Defense Framework Against Jailbreaks for (Multimodal) Large Language Models
- URL: http://arxiv.org/abs/2505.22271v1
- Date: Wed, 28 May 2025 11:57:46 GMT
- Title: Test-Time Immunization: A Universal Defense Framework Against Jailbreaks for (Multimodal) Large Language Models
- Authors: Yongcan Yu, Yanbo Wang, Ran He, Jian Liang,
- Abstract summary: Test-time IMmunization (TIM) can adaptively defend against various jailbreak attacks in a self-evolving way.<n>Test-time IMmunization (TIM) can adaptively defend against various jailbreak attacks in a self-evolving way.
- Score: 80.66766532477973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While (multimodal) large language models (LLMs) have attracted widespread attention due to their exceptional capabilities, they remain vulnerable to jailbreak attacks. Various defense methods are proposed to defend against jailbreak attacks, however, they are often tailored to specific types of jailbreak attacks, limiting their effectiveness against diverse adversarial strategies. For instance, rephrasing-based defenses are effective against text adversarial jailbreaks but fail to counteract image-based attacks. To overcome these limitations, we propose a universal defense framework, termed Test-time IMmunization (TIM), which can adaptively defend against various jailbreak attacks in a self-evolving way. Specifically, TIM initially trains a gist token for efficient detection, which it subsequently applies to detect jailbreak activities during inference. When jailbreak attempts are identified, TIM implements safety fine-tuning using the detected jailbreak instructions paired with refusal answers. Furthermore, to mitigate potential performance degradation in the detector caused by parameter updates during safety fine-tuning, we decouple the fine-tuning process from the detection module. Extensive experiments on both LLMs and multimodal LLMs demonstrate the efficacy of TIM.
Related papers
- One Model Transfer to All: On Robust Jailbreak Prompts Generation against LLMs [13.54228868302755]
ArrAttack is an attack method designed to target defended large language models (LLMs)<n>ArrAttack automatically generates robust jailbreak prompts capable of bypassing various defense measures.<n>Our work bridges the gap between jailbreak attacks and defenses, providing a fresh perspective on generating robust jailbreak prompts.
arXiv Detail & Related papers (2025-05-23T08:02:38Z) - DETAM: Defending LLMs Against Jailbreak Attacks via Targeted Attention Modification [18.006622965818856]
We introduce DETAM, a finetuning-free defense approach that improves the defensive capabilities against jailbreak attacks of LLMs.<n>Specifically, we analyze the differences in attention scores between successful and unsuccessful defenses to identify the attention heads sensitive to jailbreak attacks.<n>During inference, we reallocate attention to emphasize the user's core intention, minimizing interference from attack tokens.
arXiv Detail & Related papers (2025-04-18T09:02:12Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.<n>We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.<n>Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models [55.253208152184065]
Jailbreaking in Large Language Models (LLMs) is a major security concern as it can deceive LLMs to generate harmful text.<n>We conduct a detailed analysis of seven different jailbreak methods and find that disagreements stem from insufficient observation samples.<n>We propose a novel defense called textbfActivation Boundary Defense (ABD), which adaptively constrains the activations within the safety boundary.
arXiv Detail & Related papers (2024-12-22T14:18:39Z) - Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment [97.38766396447369]
Despite training-time safety alignment, Multimodal Large Language Models (MLLMs) remain vulnerable to jailbreak attacks.<n>We propose Immune, an inference-time defense framework that leverages a safe reward model through controlled decoding to defend against jailbreak attacks.
arXiv Detail & Related papers (2024-11-27T19:00:10Z) - Rapid Response: Mitigating LLM Jailbreaks with a Few Examples [13.841146655178585]
We develop rapid response techniques to look to block whole classes of jailbreaks after observing only a handful of attacks.
We evaluate five rapid response methods, all of which use jailbreak proliferation.
Our strongest method reduces attack success rate by a factor greater than 240 on an in-distribution set of jailbreaks and a factor greater than 15 on an out-of-distribution set.
arXiv Detail & Related papers (2024-11-12T02:44:49Z) - HSF: Defending against Jailbreak Attacks with Hidden State Filtering [14.031010511732008]
We propose a jailbreak attack defense strategy based on a Hidden State Filter (HSF)
HSF enables the model to preemptively identify and reject adversarial inputs before the inference process begins.
It significantly reduces the success rate of jailbreak attacks while minimally impacting responses to benign user queries.
arXiv Detail & Related papers (2024-08-31T06:50:07Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
Large Language Models (LLMs) are increasingly being deployed in safety-critical applications.
LLMs can still be jailbroken by carefully crafted malicious prompts, producing content that violates policy regulations.
We propose a novel EnJa attack to hide harmful instructions using prompt-level jailbreak, boost the attack success rate using a gradient-based attack, and connect the two types of jailbreak attacks via a template-based connector.
arXiv Detail & Related papers (2024-08-07T07:46:08Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
We present a systematic analysis of the dependency relationships in jailbreak attack and defense techniques.
We propose three comprehensive, automated, and logical frameworks.
We show that the proposed ensemble jailbreak attack and defense framework significantly outperforms existing research.
arXiv Detail & Related papers (2024-06-06T07:24:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.