論文の概要: Learning Fine-Grained Geometry for Sparse-View Splatting via Cascade Depth Loss
- arxiv url: http://arxiv.org/abs/2505.22279v1
- Date: Wed, 28 May 2025 12:16:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:50.589139
- Title: Learning Fine-Grained Geometry for Sparse-View Splatting via Cascade Depth Loss
- Title(参考訳): カスケード深さ損失を利用したスプレイティングのための微粒化幾何学の学習
- Authors: Wenjun Lu, Haodong Chen, Anqi Yi, Yuk Ying Chung, Zhiyong Wang, Kun Hu,
- Abstract要約: 粗い部分から細かい部分まで幾何を段階的に洗練する深度監視フレームワークである階層深度誘導平滑化(HDGS)を導入する。
マルチスケールの奥行き整合性を実現することにより,スパースビューのシナリオにおける構造的忠実度を大幅に改善する。
- 参考スコア(独自算出の注目度): 15.425094458647933
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Novel view synthesis is a fundamental task in 3D computer vision that aims to reconstruct realistic images from a set of posed input views. However, reconstruction quality degrades significantly under sparse-view conditions due to limited geometric cues. Existing methods, such as Neural Radiance Fields (NeRF) and the more recent 3D Gaussian Splatting (3DGS), often suffer from blurred details and structural artifacts when trained with insufficient views. Recent works have identified the quality of rendered depth as a key factor in mitigating these artifacts, as it directly affects geometric accuracy and view consistency. In this paper, we address these challenges by introducing Hierarchical Depth-Guided Splatting (HDGS), a depth supervision framework that progressively refines geometry from coarse to fine levels. Central to HDGS is a novel Cascade Pearson Correlation Loss (CPCL), which aligns rendered and estimated monocular depths across multiple spatial scales. By enforcing multi-scale depth consistency, our method substantially improves structural fidelity in sparse-view scenarios. Extensive experiments on the LLFF and DTU benchmarks demonstrate that HDGS achieves state-of-the-art performance under sparse-view settings while maintaining efficient and high-quality rendering
- Abstract(参考訳): 新しいビュー合成は、3次元コンピュータビジョンにおける基本的な課題であり、提示された入力ビューの集合から現実的なイメージを再構築することを目的としている。
しかし, 幾何的工法が限られたため, 粗視条件下では, 復元品質は著しく低下する。
ニューラル・レージアン・フィールド(Neural Radiance Fields、NeRF)や最近の3Dガウス・スプレイティング(3DGS)のような既存の手法では、視界が不十分な場合には、しばしばぼやけた細部や構造的アーティファクトに悩まされる。
近年の研究では、これらのアーティファクトを緩和するための重要な要因として、描画深度の品質が特定されている。
本稿では,これらの課題に,粗い部分から細かい部分まで幾何を段階的に洗練する深度監視フレームワークである階層的深度誘導平滑化(HDGS)を導入することで対処する。
セントラル・トゥ・HDGSはカスケード・ピアソン相関損失(CPCL)であり、複数の空間スケールにわたって、レンダリングされた単分子深度と推定された単分子深度を整列する。
マルチスケールの奥行き整合性を実現することにより,スパースビューのシナリオにおける構造的忠実度を大幅に改善する。
LLFFおよびDTUベンチマークの大規模な実験により、HDGSはスパースビュー設定下で、効率的かつ高品質なレンダリングを維持しながら、最先端の性能を達成することが示された。
関連論文リスト
- Diffusion-Guided Gaussian Splatting for Large-Scale Unconstrained 3D Reconstruction and Novel View Synthesis [22.767866875051013]
本稿では,現行手法の限界に対処する多視点拡散モデルを用いて,新しい3DGSフレームワークであるGS-Diffを提案する。
マルチビュー入力に条件付き擬似観測を生成することにより、制約の少ない3次元再構成問題をよく表されたものに変換する。
4つのベンチマークの実験では、GS-Diffは最先端のベースラインをかなりのマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2025-04-02T17:59:46Z) - RDG-GS: Relative Depth Guidance with Gaussian Splatting for Real-time Sparse-View 3D Rendering [13.684624443214599]
本稿では,3次元ガウススプラッティングに基づく相対深度誘導を用いた新しいスパースビュー3DレンダリングフレームワークRDG-GSを提案する。
中心となる革新は、相対的な深度誘導を利用してガウス場を洗練させ、ビュー一貫性のある空間幾何学的表現に向けてそれを操ることである。
Mip-NeRF360, LLFF, DTU, Blenderに関する広範な実験を通じて、RDG-GSは最先端のレンダリング品質と効率を実証している。
論文 参考訳(メタデータ) (2025-01-19T16:22:28Z) - GeoTexDensifier: Geometry-Texture-Aware Densification for High-Quality Photorealistic 3D Gaussian Splatting [16.859890870048076]
3D Gaussian Splatting (3DGS)は,3Dナビゲーション,VR(Virtual Reality),3Dシミュレーションなど,様々な分野で注目を集めている。
高品質な3DGSの再構成は、実際の幾何学的表面とテクスチャの細部を適合させるために十分なスプラットと適切な分布に依存している。
提案するGeoTexDensifierは,高品質なガウススプラットを再構築するためのジオテクスチャ対応デンシフィケーション戦略である。
論文 参考訳(メタデータ) (2024-12-22T00:25:53Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
本稿では,ガウスカーネルを線形カーネルに置き換えて,よりシャープで高精度な結果を得る3Dリニアスティング(DLS)を提案する。
3DLSは、最先端の忠実さと正確さを示し、ベースライン3DGSよりも30%のFPS改善を実現している。
論文 参考訳(メタデータ) (2024-11-19T11:59:54Z) - GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
本稿では,視覚のみのサラウンドビュー知覚に適したジオメトリ強化OccupancyネットワークであるGEOccについて述べる。
提案手法は,Occ3D-nuScenesデータセット上で,画像解像度が最小で,画像バックボーンが最大である状態-Of-The-Art性能を実現する。
論文 参考訳(メタデータ) (2024-05-17T07:31:20Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
本研究では,シーンの形状を暗黙的に符号化する構造認識型ガウス散乱法(SAGS)を提案する。
SAGSは、最先端のレンダリング性能と、ベンチマークノベルビュー合成データセットのストレージ要件の削減を反映している。
論文 参考訳(メタデータ) (2024-04-29T23:26:30Z) - SparseGS: Real-Time 360° Sparse View Synthesis using Gaussian Splatting [6.506706621221143]
3D Splatting (3DGS)は3Dシーンをリアルタイムにレンダリングして新しいビュー合成を実現した。
この技術は3次元幾何学を正確に再構築するために、密集したトレーニングビューを必要とする。
スパーストレーニングビューのシナリオにおける3DGSの限界に対処するために設計された,効率的なトレーニングパイプラインであるSparseGSを紹介した。
論文 参考訳(メタデータ) (2023-11-30T21:38:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。