PhysioWave: A Multi-Scale Wavelet-Transformer for Physiological Signal Representation
- URL: http://arxiv.org/abs/2506.10351v2
- Date: Sun, 20 Jul 2025 19:42:26 GMT
- Title: PhysioWave: A Multi-Scale Wavelet-Transformer for Physiological Signal Representation
- Authors: Yanlong Chen, Mattia Orlandi, Pierangelo Maria Rapa, Simone Benatti, Luca Benini, Yawei Li,
- Abstract summary: A novel wavelet-based approach for physiological signal analysis is presented, aiming to capture multi-scale time-frequency features in various physiological signals.<n>Two large-scale pretrained models specific to EMG and ECG are introduced for the first time, achieving superior performance and setting new baselines in downstream tasks.<n>A unified multi-modal framework is constructed by integrating pretrained EEG model, where each modality is guided through its dedicated branch and fused via learnable weighted fusion.
- Score: 18.978031999678507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physiological signals are often corrupted by motion artifacts, baseline drift, and other low-SNR disturbances, which pose significant challenges for analysis. Additionally, these signals exhibit strong non-stationarity, with sharp peaks and abrupt changes that evolve continuously, making them difficult to represent using traditional time-domain or filtering methods. To address these issues, a novel wavelet-based approach for physiological signal analysis is presented, aiming to capture multi-scale time-frequency features in various physiological signals. Leveraging this technique, two large-scale pretrained models specific to EMG and ECG are introduced for the first time, achieving superior performance and setting new baselines in downstream tasks. Additionally, a unified multi-modal framework is constructed by integrating pretrained EEG model, where each modality is guided through its dedicated branch and fused via learnable weighted fusion. This design effectively addresses challenges such as low signal-to-noise ratio, high inter-subject variability, and device mismatch, outperforming existing methods on multi-modal tasks. The proposed wavelet-based architecture lays a solid foundation for analysis of diverse physiological signals, while the multi-modal design points to next-generation physiological signal processing with potential impact on wearable health monitoring, clinical diagnostics, and broader biomedical applications.
Related papers
- A Novel Data Augmentation Strategy for Robust Deep Learning Classification of Biomedical Time-Series Data: Application to ECG and EEG Analysis [2.355460994057843]
This study proposes a novel and unified deep learning framework that achieves state-of-the-art performance across different signal types.<n>Unlike prior work, we scientifically increase signal complexity to achieve future-reaching capabilities, which resulted in the best predictions.<n>The architecture requires 130 MB of memory and processes each sample in 10 ms, suggesting suitability for deployment on low-end or wearable devices.
arXiv Detail & Related papers (2025-07-16T21:38:10Z) - Efficient and Robust Multidimensional Attention in Remote Physiological Sensing through Target Signal Constrained Factorization [7.947387272047604]
We present MMRPhys, an efficient dual-branch 3D-CNN architecture designed for simultaneous estimation of photoplethysmography (rRSP) and respiratory (rRSP) signals from multimodal video inputs.<n>We demonstrate that MMRPhys with TSFM significantly outperforms state-of-the-art methods in generalization across domain shifts for rRSP estimation, while maintaining a minimal inference latency suitable for real-time applications.
arXiv Detail & Related papers (2025-05-11T15:20:45Z) - PhysLLM: Harnessing Large Language Models for Cross-Modal Remote Physiological Sensing [49.243031514520794]
Large Language Models (LLMs) excel at capturing long-range signals due to their text-centric design.<n>PhysLLM achieves state-the-art accuracy and robustness, demonstrating superior generalization across lighting variations and motion scenarios.
arXiv Detail & Related papers (2025-05-06T15:18:38Z) - Towards Robust Multimodal Physiological Foundation Models: Handling Arbitrary Missing Modalities [9.785262633953794]
Physio Omni is a foundation model for multimodal physiological signal analysis.<n>It trains a decoupled multimodal tokenizer, enabling masked signal pre-training.<n>It achieves state-of-the-art performance while maintaining strong robustness to missing modalities.
arXiv Detail & Related papers (2025-04-28T09:00:04Z) - Structure-Accurate Medical Image Translation via Dynamic Frequency Balance and Knowledge Guidance [60.33892654669606]
Diffusion model is a powerful strategy to synthesize the required medical images.<n>Existing approaches still suffer from the problem of anatomical structure distortion due to the overfitting of high-frequency information.<n>We propose a novel method based on dynamic frequency balance and knowledge guidance.
arXiv Detail & Related papers (2025-04-13T05:48:13Z) - Spatial Adaptation Layer: Interpretable Domain Adaptation For Biosignal Sensor Array Applications [0.7499722271664147]
We propose the Spatial Adaptation Layer (SAL), which can be applied to any biosignal array model.<n>We also introduce learnable baseline normalization (LBN) to reduce baseline fluctuations.<n>Tested on two HD-sEMG gesture recognition datasets, SAL and LBN outperformed standard fine-tuning on regular arrays.
arXiv Detail & Related papers (2024-09-12T14:06:12Z) - Real-Time Model-Based Quantitative Ultrasound and Radar [65.268245109828]
We propose a neural network based on the physical model of wave propagation, which defines the relationship between the received signals and physical properties.
Our network can reconstruct multiple physical properties in less than one second for complex and realistic scenarios.
arXiv Detail & Related papers (2024-02-16T09:09:16Z) - PulseImpute: A Novel Benchmark Task for Pulsative Physiological Signal
Imputation [54.839600943189915]
Mobile Health (mHealth) is the ability to use wearable sensors to monitor participant physiology at high frequencies during daily life to enable temporally-precise health interventions.
Despite a rich imputation literature, existing techniques are ineffective for the pulsative signals which comprise many mHealth applications.
We address this gap with PulseImpute, the first large-scale pulsative signal imputation challenge which includes realistic mHealth missingness models, an extensive set of baselines, and clinically-relevant downstream tasks.
arXiv Detail & Related papers (2022-12-14T21:39:15Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.