ECG Signal Denoising Using Multi-scale Patch Embedding and Transformers
- URL: http://arxiv.org/abs/2407.11065v1
- Date: Fri, 12 Jul 2024 03:13:52 GMT
- Title: ECG Signal Denoising Using Multi-scale Patch Embedding and Transformers
- Authors: Ding Zhu, Vishnu Kabir Chhabra, Mohammad Mahdi Khalili,
- Abstract summary: We propose a deep learning method that combines a one-dimensional convolutional layer with transformer architecture for denoising ECG signals.
The embedding then is used as the input of a transformer network and enhances the capability of the transformer for denoising the ECG signal.
- Score: 6.882042556551613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiovascular disease is a major life-threatening condition that is commonly monitored using electrocardiogram (ECG) signals. However, these signals are often contaminated by various types of noise at different intensities, significantly interfering with downstream tasks. Therefore, denoising ECG signals and increasing the signal-to-noise ratio is crucial for cardiovascular monitoring. In this paper, we propose a deep learning method that combines a one-dimensional convolutional layer with transformer architecture for denoising ECG signals. The convolutional layer processes the ECG signal by various kernel/patch sizes and generates an embedding called multi-scale patch embedding. The embedding then is used as the input of a transformer network and enhances the capability of the transformer for denoising the ECG signal.
Related papers
- Modally Reduced Representation Learning of Multi-Lead ECG Signals through Simultaneous Alignment and Reconstruction [0.0]
We propose a modally reduced representation learning method for ECG signals that is capable of generating channel-agnostic, unified representations for ECG signals.
Our generated embeddings can work as competent features for ECG signals for downstream tasks.
arXiv Detail & Related papers (2024-05-24T06:06:05Z) - Quantifying Noise of Dynamic Vision Sensor [49.665407116447454]
Dynamic visual sensors (DVS) are characterised by a large amount of background activity (BA) noise.
It is difficult to distinguish between noise and the cleaned sensor signals using standard image processing techniques.
A new technique is presented to characterise BA noise derived from the Detrended Fluctuation Analysis (DFA)
arXiv Detail & Related papers (2024-04-02T13:43:08Z) - WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
We introduce a novel self-supervised CT image denoising method called WIA-LD2ND, only using NDCT data.
WIA-LD2ND comprises two modules: Wavelet-based Image Alignment (WIA) and Frequency-Aware Multi-scale Loss (FAM)
arXiv Detail & Related papers (2024-03-18T11:20:11Z) - Bayesian ECG reconstruction using denoising diffusion generative models [11.603515105957461]
We propose a denoising diffusion generative model (DDGM) trained with healthy electrocardiogram (ECG) data.
Our results show that this innovative generative model can successfully generate realistic ECG signals.
arXiv Detail & Related papers (2023-12-18T15:56:21Z) - Unsupervised Denoising for Signal-Dependent and Row-Correlated Imaging Noise [54.0185721303932]
We present the first fully unsupervised deep learning-based denoiser capable of handling imaging noise that is row-correlated.
Our approach uses a Variational Autoencoder with a specially designed autoregressive decoder.
Our method does not require a pre-trained noise model and can be trained from scratch using unpaired noisy data.
arXiv Detail & Related papers (2023-10-11T20:48:20Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - ECG classification using Deep CNN and Gramian Angular Field [2.685668802278155]
The proposed method is based on transforming time frequency 1D vectors into 2D images using Gramian Angular Field transform.
The obtained results show a classification accuracy of 97.47% and 98.65% for anomaly detection.
This has significant implications in the diagnosis and treatment of cardiovascular diseases and detection of anomalies.
arXiv Detail & Related papers (2023-07-25T13:26:52Z) - Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders
(DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN) [68.8204255655161]
Cycle Consistent Generative Adversarial Network (GAN) is implemented to yield high-field, high resolution, high signal-to-noise ratio (SNR) Magnetic Resonance Imaging (MRI) images.
Images were utilized to train a Denoising Autoencoder (DAE) and a Cycle-GAN, with paired and unpaired cases.
This work demonstrates the use of a generative deep learning model that can outperform classical DAEs to improve low-field MRI images and does not require image pairs.
arXiv Detail & Related papers (2023-07-12T00:01:00Z) - ECG Signal Super-resolution by Considering Reconstruction and Cardiac
Arrhythmias Classification Loss [0.0]
We propose a deep-learning-based ECG signal super-resolution framework (termed ESRNet) to recover compressed ECG signals.
Experimental results show that the proposed ESRNet framework can well reconstruct ECG signals from the 10-times compressed ones.
arXiv Detail & Related papers (2020-12-07T15:43:50Z) - AdaIN-Switchable CycleGAN for Efficient Unsupervised Low-Dose CT
Denoising [46.0231398013639]
We propose a novel cycleGAN architecture using a single switchable generator.
The proposed method outperforms the previous cycleGAN approaches while using only about half the parameters.
arXiv Detail & Related papers (2020-08-13T08:30:23Z) - Multi-level Stress Assessment Using Multi-domain Fusion of ECG Signal [1.52292571922932]
We introduce a dataset with multiple stress levels and then classify these levels using a novel deep learning approach.
We made signal images multimodal and multidomain by converting them into time-frequency and frequency domain.
With proposed fusion framework and using ECG signal to image conversion, we reach an average accuracy of 85.45%.
arXiv Detail & Related papers (2020-08-12T18:08:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.