Rethinking BPS: A Utility-Based Evaluation Framework
- URL: http://arxiv.org/abs/2505.22316v1
- Date: Wed, 28 May 2025 13:00:52 GMT
- Title: Rethinking BPS: A Utility-Based Evaluation Framework
- Authors: Konrad Ă–zdemir, Lukas Kirchdorfer, Keyvan Amiri Elyasi, Han van der Aa, Heiner Stuckenschmidt,
- Abstract summary: State-of-the-art approach to evaluating BPS models has two key limitations.<n>It treats simulation as a forecasting problem, testing whether models can predict unseen future events.<n>We propose a novel framework that evaluates simulation quality based on its ability to generate representative process behavior.
- Score: 6.590869939300887
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Business process simulation (BPS) is a key tool for analyzing and optimizing organizational workflows, supporting decision-making by estimating the impact of process changes. The reliability of such estimates depends on the ability of a BPS model to accurately mimic the process under analysis, making rigorous accuracy evaluation essential. However, the state-of-the-art approach to evaluating BPS models has two key limitations. First, it treats simulation as a forecasting problem, testing whether models can predict unseen future events. This fails to assess how well a model captures the as-is process, particularly when process behavior changes from train to test period. Thus, it becomes difficult to determine whether poor results stem from an inaccurate model or the inherent complexity of the data, such as unpredictable drift. Second, the evaluation approach strongly relies on Earth Mover's Distance-based metrics, which can obscure temporal patterns and thus yield misleading conclusions about simulation quality. To address these issues, we propose a novel framework that evaluates simulation quality based on its ability to generate representative process behavior. Instead of comparing simulated logs to future real-world executions, we evaluate whether predictive process monitoring models trained on simulated data perform comparably to those trained on real data for downstream analysis tasks. Empirical results show that our framework not only helps identify sources of discrepancies but also distinguishes between model accuracy and data complexity, offering a more meaningful way to assess BPS quality.
Related papers
- A Divide-and-Conquer Approach for Modeling Arrival Times in Business Process Simulation [6.590869939300887]
Business Process Simulation (BPS) is a critical tool for analyzing and improving organizational processes.<n>Case-arrival model determines the pattern of new case entries into a process.<n>Existing approaches often rely on oversimplified static distributions of inter-arrival times.
arXiv Detail & Related papers (2025-05-28T14:09:51Z) - The Lessons of Developing Process Reward Models in Mathematical Reasoning [62.165534879284735]
Process Reward Models (PRMs) aim to identify and mitigate intermediate errors in the reasoning processes.<n>We develop a consensus filtering mechanism that effectively integrates Monte Carlo (MC) estimation with Large Language Models (LLMs)<n>We release a new state-of-the-art PRM that outperforms existing open-source alternatives.
arXiv Detail & Related papers (2025-01-13T13:10:16Z) - A Probabilistic Perspective on Unlearning and Alignment for Large Language Models [48.96686419141881]
We introduce the first formal probabilistic evaluation framework for Large Language Models (LLMs)<n> Namely, we propose novel metrics with high probability guarantees concerning the output distribution of a model.<n>Our metrics are application-independent and allow practitioners to make more reliable estimates about model capabilities before deployment.
arXiv Detail & Related papers (2024-10-04T15:44:23Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - Predictive Analytics of Varieties of Potatoes [2.336821989135698]
We explore the application of machine learning algorithms specifically to enhance the selection process of Russet potato clones in breeding trials.
This study addresses the challenge of efficiently identifying high-yield, disease-resistant, and climate-resilient potato varieties.
arXiv Detail & Related papers (2024-04-04T00:49:05Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Can I Trust My Simulation Model? Measuring the Quality of Business
Process Simulation Models [1.4027589547318842]
Business Process Simulation (BPS) is an approach to analyze the performance of business processes under different scenarios.
We propose a collection of measures to evaluate the quality of a BPS model.
arXiv Detail & Related papers (2023-03-30T15:40:26Z) - Rigorous Assessment of Model Inference Accuracy using Language
Cardinality [5.584832154027001]
We develop a systematic approach that minimizes bias and uncertainty in model accuracy assessment by replacing statistical estimation with deterministic accuracy measures.
We experimentally demonstrate the consistency and applicability of our approach by assessing the accuracy of models inferred by state-of-the-art inference tools.
arXiv Detail & Related papers (2022-11-29T21:03:26Z) - Robust Neural Posterior Estimation and Statistical Model Criticism [1.5749416770494706]
We argue that modellers must treat simulators as idealistic representations of the true data generating process.
In this work we revisit neural posterior estimation (NPE), a class of algorithms that enable black-box parameter inference in simulation models.
We find that the presence of misspecification, in contrast, leads to unreliable inference when NPE is used naively.
arXiv Detail & Related papers (2022-10-12T20:06:55Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
We investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization.
We propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation.
Our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2020-10-19T14:19:42Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.