Progressive Data Dropout: An Embarrassingly Simple Approach to Faster Training
- URL: http://arxiv.org/abs/2505.22342v2
- Date: Fri, 06 Jun 2025 09:56:50 GMT
- Title: Progressive Data Dropout: An Embarrassingly Simple Approach to Faster Training
- Authors: Shriram M S, Xinyue Hao, Shihao Hou, Yang Lu, Laura Sevilla-Lara, Anurag Arnab, Shreyank N Gowda,
- Abstract summary: We propose a series of alternative training paradigms that leverage insights from hard-data-mining and dropout.<n>The proposed Progressive Data Dropout reduces the number of effective epochs to as little as 12.4% of the baseline.<n>Surprisingly, the proposed method improves accuracy by up to 4.82%.
- Score: 26.65053392031144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of the machine learning field has reliably depended on training on large datasets. While effective, this trend comes at an extraordinary cost. This is due to two deeply intertwined factors: the size of models and the size of datasets. While promising research efforts focus on reducing the size of models, the other half of the equation remains fairly mysterious. Indeed, it is surprising that the standard approach to training remains to iterate over and over, uniformly sampling the training dataset. In this paper we explore a series of alternative training paradigms that leverage insights from hard-data-mining and dropout, simple enough to implement and use that can become the new training standard. The proposed Progressive Data Dropout reduces the number of effective epochs to as little as 12.4% of the baseline. This savings actually do not come at any cost for accuracy. Surprisingly, the proposed method improves accuracy by up to 4.82%. Our approach requires no changes to model architecture or optimizer, and can be applied across standard training pipelines, thus posing an excellent opportunity for wide adoption. Code can be found here: https://github.com/bazyagami/LearningWithRevision
Related papers
- Info-Coevolution: An Efficient Framework for Data Model Coevolution [11.754869657967207]
We propose a novel framework that enables models and data to coevolve through online selective annotation with no bias.<n>For real-world datasets like ImageNet-1K, Info-Coevolution reduces annotation and training costs by 32% without performance loss.
arXiv Detail & Related papers (2025-06-09T17:04:11Z) - Just How Flexible are Neural Networks in Practice? [89.80474583606242]
It is widely believed that a neural network can fit a training set containing at least as many samples as it has parameters.
In practice, however, we only find solutions via our training procedure, including the gradient and regularizers, limiting flexibility.
arXiv Detail & Related papers (2024-06-17T12:24:45Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - KAKURENBO: Adaptively Hiding Samples in Deep Neural Network Training [2.8804804517897935]
We propose a method for hiding the least-important samples during the training of deep neural networks.
We adaptively find samples to exclude in a given epoch based on their contribution to the overall learning process.
Our method can reduce total training time by up to 22% impacting accuracy only by 0.4% compared to the baseline.
arXiv Detail & Related papers (2023-10-16T06:19:29Z) - D4: Improving LLM Pretraining via Document De-Duplication and
Diversification [38.84592304799403]
We show that careful data selection via pre-trained model embeddings can speed up training.
We also show that repeating data intelligently consistently outperforms baseline training.
arXiv Detail & Related papers (2023-08-23T17:58:14Z) - On minimizing the training set fill distance in machine learning regression [0.552480439325792]
We study a data selection approach that aims to minimize the fill distance of the selected set.
We show that selecting training sets with the FPS can also increase model stability for the specific case of Gaussian kernel regression approaches.
arXiv Detail & Related papers (2023-07-20T16:18:33Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Gradient-Free Structured Pruning with Unlabeled Data [57.999191898036706]
We propose a gradient-free structured pruning framework that uses only unlabeled data.
Up to 40% of the original FLOP count can be reduced with less than a 4% accuracy loss across all tasks considered.
arXiv Detail & Related papers (2023-03-07T19:12:31Z) - Accelerating Deep Learning with Dynamic Data Pruning [0.0]
Deep learning has become prohibitively costly, requiring access to powerful computing systems to train state-of-the-art networks.
Previous work, such as forget scores and GraNd/EL2N scores, identify important samples within a full dataset and pruning the remaining samples, thereby reducing the iterations per epoch.
We propose two algorithms, based on reinforcement learning techniques, to dynamically prune samples and achieve even higher accuracy than the random dynamic method.
arXiv Detail & Related papers (2021-11-24T16:47:34Z) - Learning Fast Sample Re-weighting Without Reward Data [41.92662851886547]
This paper presents a novel learning-based fast sample re-weighting (FSR) method that does not require additional reward data.
Our experiments show the proposed method achieves competitive results compared to state of the arts on label noise and long-tailed recognition.
arXiv Detail & Related papers (2021-09-07T17:30:56Z) - Advanced Dropout: A Model-free Methodology for Bayesian Dropout
Optimization [62.8384110757689]
Overfitting ubiquitously exists in real-world applications of deep neural networks (DNNs)
The advanced dropout technique applies a model-free and easily implemented distribution with parametric prior, and adaptively adjusts dropout rate.
We evaluate the effectiveness of the advanced dropout against nine dropout techniques on seven computer vision datasets.
arXiv Detail & Related papers (2020-10-11T13:19:58Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.