Info-Coevolution: An Efficient Framework for Data Model Coevolution
- URL: http://arxiv.org/abs/2506.08070v2
- Date: Fri, 20 Jun 2025 02:52:55 GMT
- Title: Info-Coevolution: An Efficient Framework for Data Model Coevolution
- Authors: Ziheng Qin, Hailun Xu, Wei Chee Yew, Qi Jia, Yang Luo, Kanchan Sarkar, Danhui Guan, Kai Wang, Yang You,
- Abstract summary: We propose a novel framework that enables models and data to coevolve through online selective annotation with no bias.<n>For real-world datasets like ImageNet-1K, Info-Coevolution reduces annotation and training costs by 32% without performance loss.
- Score: 11.754869657967207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning relies heavily on data, yet the continuous growth of real-world data poses challenges for efficient dataset construction and training. A fundamental yet unsolved question is: given our current model and data, does a new data (sample/batch) need annotation/learning? Conventional approaches retain all available data, leading to non-optimal data and training efficiency. Active learning aims to reduce data redundancy by selecting a subset of samples to annotate, while it increases pipeline complexity and introduces bias. In this work, we propose Info-Coevolution, a novel framework that efficiently enables models and data to coevolve through online selective annotation with no bias. Leveraging task-specific models (and open-source models), it selectively annotates and integrates online and web data to improve datasets efficiently. For real-world datasets like ImageNet-1K, Info-Coevolution reduces annotation and training costs by 32\% without performance loss. It is able to automatically give the saving ratio without tuning the ratio. It can further reduce the annotation ratio to 50\% with semi-supervised learning. We also explore retrieval-based dataset enhancement using unlabeled open-source data. Code is available at https://github.com/NUS-HPC-AI-Lab/Info-Coevolution/.
Related papers
- Quality over Quantity: An Effective Large-Scale Data Reduction Strategy Based on Pointwise V-Information [2.133855532092057]
We propose an effective data reduction strategy based on Pointwise - Information (PVI)<n>Experiments show that the classifier performance is maintained with only a 0.0001% to 0.76% reduction in accuracy when 10%-30% of the data is removed.<n>We have adapted the PVI framework, which was previously limited to English datasets, to a variety of Chinese NLP tasks and base models.
arXiv Detail & Related papers (2025-06-19T06:59:19Z) - DataRater: Meta-Learned Dataset Curation [40.90328309013541]
We propose emphDataRater, which estimates the value of training on any particular data point.<n>It is done by meta-learning using meta-gradients', with the objective of improving training efficiency on held out data.<n>In extensive experiments across a range of model scales and datasets, we find that using our DataRater to filter data is highly effective.
arXiv Detail & Related papers (2025-05-23T13:43:14Z) - Learning from Convolution-based Unlearnable Datasets [5.332412565926725]
The Conlearn-based Unlearnable DAtaset (CUDA) method aims to make data unlearnable by applying class-wise blurs to every image in the dataset.<n>In this work, we evaluate whether data remains unlearnable after image sharpening and frequency filtering.<n>We observe a substantial increase in test accuracy over adversarial training for models trained with unlearnable data.
arXiv Detail & Related papers (2024-11-04T01:51:50Z) - Adaptive Data Optimization: Dynamic Sample Selection with Scaling Laws [59.03420759554073]
We introduce Adaptive Data Optimization (ADO), an algorithm that optimize data distributions in an online fashion, concurrent with model training.
ADO does not require external knowledge, proxy models, or modifications to the model update.
ADO uses per-domain scaling laws to estimate the learning potential of each domain during training and adjusts the data mixture accordingly.
arXiv Detail & Related papers (2024-10-15T17:47:44Z) - From Data Deluge to Data Curation: A Filtering-WoRA Paradigm for Efficient Text-based Person Search [30.88999109835329]
In text-based person search endeavors, data generation has emerged as a prevailing practice, addressing concerns over privacy preservation and the arduous task of manual annotation.<n>We observe that only a subset of the data in constructed datasets plays a decisive role.<n>We introduce a new Filtering-WoRA paradigm, which contains a filtering algorithm to identify this crucial data subset and WoRA learning strategy for light fine-tuning.
arXiv Detail & Related papers (2024-04-16T05:29:14Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Exploring Learning Complexity for Efficient Downstream Dataset Pruning [8.990878450631596]
Existing dataset pruning methods require training on the entire dataset.<n>We propose a straightforward, novel, and training-free hardness score named Distorting-based Learning Complexity (DLC)<n>Our method is motivated by the observation that easy samples learned faster can also be learned with fewer parameters.
arXiv Detail & Related papers (2024-02-08T02:29:33Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Exploring Data Redundancy in Real-world Image Classification through
Data Selection [20.389636181891515]
Deep learning models often require large amounts of data for training, leading to increased costs.
We present two data valuation metrics based on Synaptic Intelligence and gradient norms, respectively, to study redundancy in real-world image data.
Online and offline data selection algorithms are then proposed via clustering and grouping based on the examined data values.
arXiv Detail & Related papers (2023-06-25T03:31:05Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - Self-Supervised Pre-Training for Transformer-Based Person
Re-Identification [54.55281692768765]
Transformer-based supervised pre-training achieves great performance in person re-identification (ReID)
Due to the domain gap between ImageNet and ReID datasets, it usually needs a larger pre-training dataset to boost the performance.
This work aims to mitigate the gap between the pre-training and ReID datasets from the perspective of data and model structure.
arXiv Detail & Related papers (2021-11-23T18:59:08Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.