Suitability Filter: A Statistical Framework for Classifier Evaluation in Real-World Deployment Settings
- URL: http://arxiv.org/abs/2505.22356v1
- Date: Wed, 28 May 2025 13:37:04 GMT
- Title: Suitability Filter: A Statistical Framework for Classifier Evaluation in Real-World Deployment Settings
- Authors: Angéline Pouget, Mohammad Yaghini, Stephan Rabanser, Nicolas Papernot,
- Abstract summary: We propose a novel framework designed to detect performance deterioration by utilizing suitability signals.<n>We aggregate suitability signals for both test and user data and compare these empirical distributions.<n>This enables proactive mitigation of potential failures in high-stakes applications.
- Score: 33.080398349395686
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deploying machine learning models in safety-critical domains poses a key challenge: ensuring reliable model performance on downstream user data without access to ground truth labels for direct validation. We propose the suitability filter, a novel framework designed to detect performance deterioration by utilizing suitability signals -- model output features that are sensitive to covariate shifts and indicative of potential prediction errors. The suitability filter evaluates whether classifier accuracy on unlabeled user data shows significant degradation compared to the accuracy measured on the labeled test dataset. Specifically, it ensures that this degradation does not exceed a pre-specified margin, which represents the maximum acceptable drop in accuracy. To achieve reliable performance evaluation, we aggregate suitability signals for both test and user data and compare these empirical distributions using statistical hypothesis testing, thus providing insights into decision uncertainty. Our modular method adapts to various models and domains. Empirical evaluations across different classification tasks demonstrate that the suitability filter reliably detects performance deviations due to covariate shift. This enables proactive mitigation of potential failures in high-stakes applications.
Related papers
- COIN: Uncertainty-Guarding Selective Question Answering for Foundation Models with Provable Risk Guarantees [51.5976496056012]
COIN is an uncertainty-guarding selection framework that calibrates statistically valid thresholds to filter a single generated answer per question.<n>COIN estimates the empirical error rate on a calibration set and applies confidence interval methods to establish a high-probability upper bound on the true error rate.<n>We demonstrate COIN's robustness in risk control, strong test-time power in retaining admissible answers, and predictive efficiency under limited calibration data.
arXiv Detail & Related papers (2025-06-25T07:04:49Z) - TRUST: Test-time Resource Utilization for Superior Trustworthiness [15.031121920821109]
We propose a novel test-time optimization method that accounts for the impact of such noise to produce more reliable confidence estimates.<n>This score defines a monotonic subset-selection function, where population accuracy consistently increases as samples with lower scores are removed.
arXiv Detail & Related papers (2025-06-06T12:52:32Z) - Principled Input-Output-Conditioned Post-Hoc Uncertainty Estimation for Regression Networks [1.4671424999873808]
Uncertainty is critical in safety-sensitive applications but is often omitted from off-the-shelf neural networks due to adverse effects on predictive performance.<n>We propose a theoretically grounded framework for post-hoc uncertainty estimation in regression tasks by fitting an auxiliary model to both original inputs and frozen model outputs.
arXiv Detail & Related papers (2025-06-01T09:13:27Z) - Conformal Segmentation in Industrial Surface Defect Detection with Statistical Guarantees [2.0257616108612373]
In industrial settings, surface defects on steel can significantly compromise its service life and elevate potential safety risks.<n>Traditional defect detection methods predominantly rely on manual inspection, which suffers from low efficiency and high costs.<n>We develop a statistically rigorous threshold based on a user-defined risk level to identify high-probability defective pixels in test images.<n>We demonstrate robust and efficient control over the expected test set error rate across varying calibration-to-test ratios.
arXiv Detail & Related papers (2025-04-24T16:33:56Z) - Coverage-Guaranteed Speech Emotion Recognition via Calibrated Uncertainty-Adaptive Prediction Sets [0.0]
Road rage, often triggered by emotional suppression and sudden outbursts, significantly threatens road safety by causing collisions and aggressive behavior.<n>Speech emotion recognition technologies can mitigate this risk by identifying negative emotions early and issuing timely alerts.<n>We propose a novel risk-controlled prediction framework providing statistically rigorous guarantees on prediction accuracy.
arXiv Detail & Related papers (2025-03-24T12:26:28Z) - Noise-Adaptive Conformal Classification with Marginal Coverage [53.74125453366155]
We introduce an adaptive conformal inference method capable of efficiently handling deviations from exchangeability caused by random label noise.<n>We validate our method through extensive numerical experiments demonstrating its effectiveness on synthetic and real data sets.
arXiv Detail & Related papers (2025-01-29T23:55:23Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
This paper presents a hybrid framework that integrates both statistical feature selection and classification techniques to improve defect detection accuracy.<n>We present around 55 distinguished features that are extracted from industrial images, which are then analyzed using statistical methods.<n>By integrating these methods with flexible machine learning applications, the proposed framework improves detection accuracy and reduces false positives and misclassifications.
arXiv Detail & Related papers (2024-12-11T22:12:21Z) - Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
Test-time adaptation (TTA) seeks to tackle potential distribution shifts between training and test data by adapting a given model w.r.t. any test sample.
Prior methods perform backpropagation for each test sample, resulting in unbearable optimization costs to many applications.
We propose an Efficient Anti-Forgetting Test-Time Adaptation (EATA) method which develops an active sample selection criterion to identify reliable and non-redundant samples.
arXiv Detail & Related papers (2024-03-18T05:49:45Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
We propose a novel complementary learning approach to enhance test-time adaptation.
In test-time adaptation tasks, information from the source domain is typically unavailable.
We highlight that the risk function of complementary labels agrees with their Vanilla loss formula.
arXiv Detail & Related papers (2023-01-15T03:36:33Z) - Simultaneous Improvement of ML Model Fairness and Performance by
Identifying Bias in Data [1.76179873429447]
We propose a data preprocessing technique that can detect instances ascribing a specific kind of bias that should be removed from the dataset before training.
In particular, we claim that in the problem settings where instances exist with similar feature but different labels caused by variation in protected attributes, an inherent bias gets induced in the dataset.
arXiv Detail & Related papers (2022-10-24T13:04:07Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.