Calibrating quantum gates up to 52 qubits in a superconducting processor
- URL: http://arxiv.org/abs/2505.22390v1
- Date: Wed, 28 May 2025 14:17:00 GMT
- Title: Calibrating quantum gates up to 52 qubits in a superconducting processor
- Authors: Daojin Fan, Guoding Liu, Shaowei Li, Ming Gong, Dachao Wu, Yiming Zhang, Chen Zha, Fusheng Chen, Sirui Cao, Yangsen Ye, Qingling Zhu, Chong Ying, Shaojun Guo, Haoran Qian, Yulin Wu, Hui Deng, Gang Wu, Cheng-Zhi Peng, Xiongfeng Ma, Xiaobo Zhu, Jian-Wei Pan,
- Abstract summary: We benchmark gate fidelities up to 52 qubits using character-average benchmarking protocol.<n>We enhance the fidelity of a 6-qubit parallel CZ gate from 87.65% to 92.04% and decrease the gate correlation from 3.53% to 3.22%.
- Score: 16.83020919407806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Benchmarking large-scale quantum gates, typically involving multiple native two-qubit and singlequbit gates, is crucial in quantum computing. Global fidelity, encompassing information about intergate correlations, offers a comprehensive metric for evaluating and optimizing gate performance, unlike the fidelities of individual local native gates. In this work, utilizing the character-average benchmarking protocol implementable in a shallow circuit, we successfully benchmark gate fidelities up to 52 qubits. Notably, we achieved a fidelity of 63.09$\pm $0.23% for a 44-qubit parallel CZ gate. Utilizing the global fidelity of the parallel CZ gate, we explore the correlations among local CZ gates by introducing an inter-gate correlation metric, enabling one to simultaneously quantify crosstalk error when benchmarking gate fidelity. Finally, we apply our methods in gate optimization. By leveraging global fidelity for optimization, we enhance the fidelity of a 6-qubit parallel CZ gate from 87.65% to 92.04% and decrease the gate correlation from 3.53% to 3.22%, compared to local gate fidelitybased optimization. The experimental results align well with our established composite noise model, incorporating depolarizing and ZZ-coupling noises, and provide valuable insight into further study and mitigation of correlated noise.
Related papers
- Jenga-Krotov algorithm: Efficient compilation of multi-qubit gates for exchange-only qubits [5.308887545323882]
Exchange-only (EO) qubits offer a compelling platform for scalable semiconductor-based quantum computing.<n>High-fidelity single- and two-qubit gates have been demonstrated, but synthesis of efficient multi-qubit operations remains a key bottleneck.<n>We introduce a gradient-based optimization algorithm, Jenga-Krotov (JK), tailored to discover compact, high-fidelity EO gate sequences.
arXiv Detail & Related papers (2025-07-16T17:40:58Z) - Direct Implementation of High-Fidelity Three-Qubit Gates for Superconducting Processor with Tunable Couplers [18.682049956714156]
Three-qubit gates can be constructed using combinations of single-qubit and two-qubit gates, making their independent realization unnecessary.<n>We propose and experimentally demonstrate a high-fidelity scheme for implementing a three-qubit controlled-controlled-Z (CCZ) gate in a flip-chip superconducting quantum processor with tunable couplers.
arXiv Detail & Related papers (2025-01-30T12:57:57Z) - Improving fidelity of multi-qubit gates using hardware-level pulse
parallelization [0.0]
We present the parallelization of pre-calibrated pulses at the hardware level as an easy-to-implement strategy to optimize quantum gates.
We show that such parallelization leads to improved fidelity and gate time reduction, when compared to serial concatenation.
arXiv Detail & Related papers (2023-12-20T19:00:02Z) - Majorization-based benchmark of the complexity of quantum processors [105.54048699217668]
We numerically simulate and characterize the operation of various quantum processors.
We identify and assess quantum complexity by comparing the performance of each device against benchmark lines.
We find that the majorization-based benchmark holds as long as the circuits' output states have, on average, high purity.
arXiv Detail & Related papers (2023-04-10T23:01:10Z) - Direct pulse-level compilation of arbitrary quantum logic gates on superconducting qutrits [36.30869856057226]
We demonstrate any arbitrary qubit and qutrit gate can be realized with high-fidelity, which can significantly reduce the length of a gate sequence.
We show that optimal control gates are robust to drift for at least three hours and that the same calibration parameters can be used for all implemented gates.
arXiv Detail & Related papers (2023-03-07T22:15:43Z) - Scalable fast benchmarking for individual quantum gates with local
twirling [1.7995166939620801]
We propose a character-cycle benchmarking protocol and a character-average benchmarking protocol only using local twirling gates.
We numerically demonstrate our protocols for a non-Clifford gate -- controlled-$(TX)$ and a Clifford gate -- five-qubit quantum error-correcting encoding circuit.
arXiv Detail & Related papers (2022-03-19T13:01:14Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Realization of high-fidelity CZ gates in extensible superconducting
qubits design with a tunable coupler [16.97933849503542]
Tunable coupler is used to reduce the problem of parasitic coupling and frequency crowding in many-qubit systems.
We experimentally demonstrate high-fidelity controlled-phase (CZ) gate by manipulating center qubit and one near-neighbor qubit.
arXiv Detail & Related papers (2021-09-13T03:16:41Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.