Jenga-Krotov algorithm: Efficient compilation of multi-qubit gates for exchange-only qubits
- URL: http://arxiv.org/abs/2507.12448v1
- Date: Wed, 16 Jul 2025 17:40:58 GMT
- Title: Jenga-Krotov algorithm: Efficient compilation of multi-qubit gates for exchange-only qubits
- Authors: Jiahao Wu, Guanjie He, Wenyuan Zhuo, Quan Fu, Xin Wang,
- Abstract summary: Exchange-only (EO) qubits offer a compelling platform for scalable semiconductor-based quantum computing.<n>High-fidelity single- and two-qubit gates have been demonstrated, but synthesis of efficient multi-qubit operations remains a key bottleneck.<n>We introduce a gradient-based optimization algorithm, Jenga-Krotov (JK), tailored to discover compact, high-fidelity EO gate sequences.
- Score: 5.308887545323882
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exchange-only (EO) qubits, implemented in triple-quantum-dot systems, offer a compelling platform for scalable semiconductor-based quantum computing by enabling universal control through purely exchange interactions. While high-fidelity single- and two-qubit gates have been demonstrated, the synthesis of efficient multi-qubit operations -- such as the Toffoli gate -- remains a key bottleneck. Conventional gate decompositions into elementary operations lead to prohibitively long and error-prone pulse sequences, limiting practical deployment. In this work, we introduce a gradient-based optimization algorithm, Jenga-Krotov (JK), tailored to discover compact, high-fidelity EO gate sequences. Applying JK to the Toffoli gate, we reduce the number of required exchange unitaries from 216 (in standard decomposition) to 92, and compress the time steps required from 162 to 50, all while maintaining target fidelity. Under realistic noise, the accumulated gate error from our optimized sequence is an order of magnitude lower than that of conventional approaches. These results demonstrate that the JK algorithm is a general and scalable strategy for multi-qubit gate synthesis in EO architectures, potentially facilitating realization of multi-qubit algorithms on semiconductor platforms.
Related papers
- Optimization and Synthesis of Quantum Circuits with Global Gates [44.99833362998488]
We use global interactions, such as the Global Molmer-Sorensen gate present in ion trap hardware, to optimize and synthesize quantum circuits.<n>The algorithm is based on the ZX-calculus and uses a specialized circuit extraction routine that groups entangling gates into Global MolmerSorensen gates.<n>We benchmark the algorithm in a variety of circuits, and show how it improves their performance under state-of-the-art hardware considerations.
arXiv Detail & Related papers (2025-07-28T10:25:31Z) - Multi-Target Rydberg Gates via Spatial Blockade Engineering [47.582155477608445]
Multi-target gates offer the potential to reduce gate depth in syndrome extraction for quantum error correction.<n>We propose single-control-multi-target CZotimes N gates on a single-species neutral-atom platform.<n>We synthesise smooth control pulses for CZZ and CZZZ gates, achieving fidelities of up to 99.55% and 99.24%, respectively.
arXiv Detail & Related papers (2025-04-21T17:59:56Z) - Efficient Implementation of Arbitrary Two-Qubit Gates via Unified Control [30.657387004518604]
The native gate set governs the accuracy of basic quantum operations and dictates the complexity of implementing quantum algorithms.<n>Here, we experimentally demonstrate a unified and highly versatile gate scheme capable of generating arbitrary two-qubit gates.<n>We achieve high fidelities averaging $99.37 pm 0.07%$ across a wide range of commonly used two-qubit unitaries.<n>Our results highlight that fully exploiting the capabilities of a single interaction can yield a comprehensive and highly accurate gate set.
arXiv Detail & Related papers (2025-02-05T21:00:34Z) - Efficient compilation of quantum circuits using multi-qubit gates [0.0]
We present a compilation scheme which implements a general-circuit decomposition to a sequence of Ising-type, long-range, multi-qubit entangling gates.<n>We numerically test our compilation and show that, compared to conventional realizations with two-qubit gates, our compilations improves the logarithm of quantum volume by $20%$ to $25%$.
arXiv Detail & Related papers (2025-01-28T19:08:13Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Direct pulse-level compilation of arbitrary quantum logic gates on superconducting qutrits [36.30869856057226]
We demonstrate any arbitrary qubit and qutrit gate can be realized with high-fidelity, which can significantly reduce the length of a gate sequence.
We show that optimal control gates are robust to drift for at least three hours and that the same calibration parameters can be used for all implemented gates.
arXiv Detail & Related papers (2023-03-07T22:15:43Z) - Realization of Scalable Cirac-Zoller Multi-Qubit Gates [5.309268373861329]
The universality in quantum computing states that any quantum computational task can be decomposed into a finite set of logic gates operating on one and two qubits.
Practical processor designs benefit greatly from availability of multi-qubit gates that operate on more than two qubits.
Here, we take advantage of novel performance benefits of long ion chains to realize fully programmable and scalable high-fidelity Cirac-Zoller gates.
arXiv Detail & Related papers (2023-01-18T14:34:24Z) - Extensive characterization of a family of efficient three-qubit gates at
the coherence limit [0.4471952592011114]
We implement a three-qubit gate by simultaneously applying two-qubit operations.
We generate two classes of entangled states, the GHZ and W states, by applying the new gate only once.
We analyze the experimental and statistical errors on the fidelity of the gates and of the target states.
arXiv Detail & Related papers (2022-07-06T19:42:29Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - High-fidelity, high-scalability two-qubit gate scheme for
superconducting qubits [16.01171409402694]
We experimentally demonstrate a new two-qubit gate scheme that exploits fixed-frequency qubits and a tunable coupler in a superconducting quantum circuit.
The scheme requires less control lines, reduces crosstalk effect, simplifies calibration procedures, yet produces a controlled-Z gate in 30ns with a high fidelity of 99.5%.
Our demonstration paves the way for large-scale implementation of high-fidelity quantum operations.
arXiv Detail & Related papers (2020-06-21T17:55:28Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.