Numerical Optimization Strategies for the Variational Hamiltonian Ansatz in Noisy Quantum Environments
- URL: http://arxiv.org/abs/2505.22398v2
- Date: Thu, 29 May 2025 10:30:21 GMT
- Title: Numerical Optimization Strategies for the Variational Hamiltonian Ansatz in Noisy Quantum Environments
- Authors: S. Illésová, V. Novák, T. Bezděk, C. Possel, M. Beseda,
- Abstract summary: We conduct a benchmark of eight optimization algorithms for variational quantum chemistry using the tVHA.<n>We evaluate performance on $H$, $H_4$, and $LiH$ under noiseless and sampling noise conditions.<n>We identify a precision limit set by sampling noise, with diminishing returns beyond approximately 1000 shots.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We conduct a benchmark of eight optimization algorithms for variational quantum chemistry using the tVHA, evaluating performance on $H_2$, $H_4$, and $LiH$ (in both full and active spaces) under noiseless and sampling noise conditions. Sampling noise fundamentally alters optimizer behavior, with gradient-based methods performing best in ideal conditions, while population-based algorithms, such as CMA-ES, show greater resilience under noise. Hartree-Fock initialization reduces the number of function evaluations by 27-60% and consistently yields higher final accuracy compared to random starting points. We identify a precision limit set by sampling noise, with diminishing returns beyond approximately 1000 shots.
Related papers
- Noise Conditional Variational Score Distillation [60.38982038894823]
Noise Conditional Variational Score Distillation (NCVSD) is a novel method for distilling pretrained diffusion models into generative denoisers.<n>By integrating this insight into the Variational Score Distillation framework, we enable scalable learning of generative denoisers.
arXiv Detail & Related papers (2025-06-11T06:01:39Z) - Gradient Normalization Provably Benefits Nonconvex SGD under Heavy-Tailed Noise [60.92029979853314]
We investigate the roles of gradient normalization and clipping in ensuring the convergence of Gradient Descent (SGD) under heavy-tailed noise.
Our work provides the first theoretical evidence demonstrating the benefits of gradient normalization in SGD under heavy-tailed noise.
We introduce an accelerated SGD variant incorporating gradient normalization and clipping, further enhancing convergence rates under heavy-tailed noise.
arXiv Detail & Related papers (2024-10-21T22:40:42Z) - An Adaptive Re-evaluation Method for Evolution Strategy under Additive Noise [3.92625489118339]
We propose a novel method to adaptively choose the optimal re-evaluation number for function values corrupted by additive Gaussian white noise.<n>We experimentally compare our method to the state-of-the-art noise-handling methods for CMA-ES on a set of artificial test functions.
arXiv Detail & Related papers (2024-09-25T09:10:21Z) - Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - Improving Quantum Approximate Optimization by Noise-Directed Adaptive Remapping [3.47862118034022]
Noise-Directed Remapping (NDAR) is a algorithm for approximately solving binary optimization problems by leveraging certain types of noise.
We consider access to a noisy quantum processor with dynamics that features a global attractor state.
Our algorithm bootstraps the noise attractor state by iteratively gauge-transforming the cost-function Hamiltonian in a way that transforms the noise attractor into higher-quality solutions.
arXiv Detail & Related papers (2024-04-01T18:28:57Z) - Greedy versus Map-based Optimized Adaptive Algorithms for
random-telegraph-noise mitigation by spectator qubits [6.305016513788048]
In a scenario where data-storage qubits are kept in isolation as far as possible, noise mitigation can still be done using additional noise probes.
We construct a theoretical model assuming projective measurements on the qubits, and derive the performance of different measurement and control strategies.
We show, analytically and numerically, that MOAAAR outperforms the Greedy algorithm, especially in the regime of high noise sensitivity of SQ.
arXiv Detail & Related papers (2022-05-25T08:25:10Z) - A Comparison of Various Classical Optimizers for a Variational Quantum
Linear Solver [0.0]
Variational Hybrid Quantum Classical Algorithms (VHQCAs) are a class of quantum algorithms intended to run on noisy quantum devices.
These algorithms employ a parameterized quantum circuit (ansatz) and a quantum-classical feedback loop.
A classical device is used to optimize the parameters in order to minimize a cost function that can be computed far more efficiently on a quantum device.
arXiv Detail & Related papers (2021-06-16T10:40:00Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Modeling and mitigation of cross-talk effects in readout noise with
applications to the Quantum Approximate Optimization Algorithm [0.0]
Noise mitigation can be performed up to some error for which we derive upper bounds.
Experiments on 15 (23) qubits using IBM's devices to test both the noise model and the error-mitigation scheme.
We show that similar effects are expected for Haar-random quantum states and states generated by shallow-depth random circuits.
arXiv Detail & Related papers (2021-01-07T02:19:58Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.