論文の概要: Forecasting Multivariate Urban Data via Decomposition and Spatio-Temporal Graph Analysis
- arxiv url: http://arxiv.org/abs/2505.22474v1
- Date: Wed, 28 May 2025 15:24:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:50.692324
- Title: Forecasting Multivariate Urban Data via Decomposition and Spatio-Temporal Graph Analysis
- Title(参考訳): 多変量都市データの分解と時空間グラフ解析による予測
- Authors: Amirhossein Sohrabbeig, Omid Ardakanian, Petr Musilek,
- Abstract要約: 本稿では,高度なグラフニューラルネットワーク(GNN)を用いた多変量時系列予測モデルを提案する。
提案モデルでは, 予測の精度と解釈可能性を高めるために, 分解前処理ステップ, 孤立傾向, 季節, 残留成分を組み込んだ。
結果は、スマートインフラストラクチャシステムを最適化するモデルの可能性を強調し、エネルギー効率の高い都市開発と公共福祉の強化に寄与する。
- 参考スコア(独自算出の注目度): 2.1301560294088318
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The forecasting of multivariate urban data presents a complex challenge due to the intricate dependencies between various urban metrics such as weather, air pollution, carbon intensity, and energy demand. This paper introduces a novel multivariate time-series forecasting model that utilizes advanced Graph Neural Networks (GNNs) to capture spatial dependencies among different time-series variables. The proposed model incorporates a decomposition-based preprocessing step, isolating trend, seasonal, and residual components to enhance the accuracy and interpretability of forecasts. By leveraging the dynamic capabilities of GNNs, the model effectively captures interdependencies and improves the forecasting performance. Extensive experiments on real-world datasets, including electricity usage, weather metrics, carbon intensity, and air pollution data, demonstrate the effectiveness of the proposed approach across various forecasting scenarios. The results highlight the potential of the model to optimize smart infrastructure systems, contributing to energy-efficient urban development and enhanced public well-being.
- Abstract(参考訳): 多変量都市データの予測は、気象、大気汚染、炭素強度、エネルギー需要といった様々な都市指標間の複雑な依存関係のため、複雑な課題を示す。
本稿では,高度なグラフニューラルネットワーク(GNN)を用いて時系列変数間の空間的依存関係を推定する,新しい多変量時系列予測モデルを提案する。
提案モデルでは, 予測の精度と解釈可能性を高めるために, 分解前処理ステップ, 孤立傾向, 季節, 残留成分を組み込んだ。
GNNの動的機能を活用することで、モデルが相互依存を効果的に捕捉し、予測性能を向上させる。
電気利用、気象メトリクス、炭素強度、大気汚染データを含む実世界のデータセットに関する大規模な実験は、様々な予測シナリオで提案されたアプローチの有効性を実証している。
結果は、スマートインフラストラクチャシステムを最適化するモデルの可能性を強調し、エネルギー効率の高い都市開発と公共福祉の強化に寄与する。
関連論文リスト
- Multi-Source Temporal Attention Network for Precipitation Nowcasting [4.726419619132143]
降水量は様々な産業で重要であり、気候変動の緩和と適応に重要な役割を果たしている。
降水量予測のための効率的な深層学習モデルを導入し,既存の運用モデルよりも高い精度で降雨を最大8時間予測する。
論文 参考訳(メタデータ) (2024-10-11T09:09:07Z) - Weather-Informed Probabilistic Forecasting and Scenario Generation in Power Systems [15.393565192962482]
再生可能エネルギー源の電力グリッドへの統合は、その本質性と不確実性のために大きな課題を呈している。
本稿では,高次元環境下での日頭予測と風のシナリオ生成のための確率予測とガウスコプラを組み合わせる手法を提案する。
論文 参考訳(メタデータ) (2024-09-11T21:44:59Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Towards Invariant Time Series Forecasting in Smart Cities [21.697069894721448]
本研究では,異なる都市環境下でのより堅牢な予測のために,不変表現を導出する手法を提案する。
本手法は, 気候モデル, 都市計画, スマートシティ資源管理など, 多様な分野に拡張することができる。
論文 参考訳(メタデータ) (2024-05-08T21:23:01Z) - Fuxi-DA: A Generalized Deep Learning Data Assimilation Framework for Assimilating Satellite Observations [15.934673617658609]
ディープラーニングモデルは、世界中のトップNWPモデルのマッチング、さらには予測精度を超越する可能性を示している。
本研究は、衛星観測を同化するための一般化されたDLベースのDAフレームワークであるFuxiDAを紹介する。
Fengyun-4Bに搭載されたAdvanced Geosynchronous Radiation Imager(AGRI)のデータを同調することにより、FuXi-DAは解析誤差を一貫して軽減し、予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-04-12T15:02:14Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
この研究は、多様な都市空間時間データセットにアクセスし活用する際の課題に対処する。
都市空間・時空間のビッグデータ用に設計された統合ストレージフォーマットであるアトミックファイルを導入し,40種類の多様なデータセットでその有効性を検証する。
多様なモデルとデータセットを使用して広範な実験を行い、パフォーマンスリーダーボードを確立し、有望な研究方向性を特定する。
論文 参考訳(メタデータ) (2023-08-24T16:20:00Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - Enhancing the Robustness via Adversarial Learning and Joint
Spatial-Temporal Embeddings in Traffic Forecasting [11.680589359294972]
本稿では,ダイナミックスとロバストネスのバランスをとることの課題に対処するため,TrendGCNを提案する。
我々のモデルは、空間的(ノード的に)埋め込みと時間的(時間的に)埋め込みを同時に組み込んで、不均一な空間的・時間的畳み込みを考慮に入れている。
ステップワイドな予測エラーを独立して扱う従来のアプローチと比較して、我々のアプローチはより現実的で堅牢な予測を生み出すことができる。
論文 参考訳(メタデータ) (2022-08-05T09:36:55Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。