Non-Asymptotic Analysis of (Sticky) Track-and-Stop
- URL: http://arxiv.org/abs/2505.22475v1
- Date: Wed, 28 May 2025 15:26:55 GMT
- Title: Non-Asymptotic Analysis of (Sticky) Track-and-Stop
- Authors: Riccardo Poiani, Martino Bernasconi, Andrea Celli,
- Abstract summary: In pure exploration problems, a statistician sequentially collects information to answer a question about some and unknown environment.<n>The Track-and-Stop algorithm is a pioneering method to solve these problems.<n>We provide non-asymptotic guarantees for both algorithms.
- Score: 15.79182979494432
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In pure exploration problems, a statistician sequentially collects information to answer a question about some stochastic and unknown environment. The probability of returning a wrong answer should not exceed a maximum risk parameter $\delta$ and good algorithms make as few queries to the environment as possible. The Track-and-Stop algorithm is a pioneering method to solve these problems. Specifically, it is well-known that it enjoys asymptotic optimality sample complexity guarantees for $\delta\to 0$ whenever the map from the environment to its correct answers is single-valued (e.g., best-arm identification with a unique optimal arm). The Sticky Track-and-Stop algorithm extends these results to settings where, for each environment, there might exist multiple correct answers (e.g., $\epsilon$-optimal arm identification). Although both methods are optimal in the asymptotic regime, their non-asymptotic guarantees remain unknown. In this work, we fill this gap and provide non-asymptotic guarantees for both algorithms.
Related papers
- Optimal Top-Two Method for Best Arm Identification and Fluid Analysis [15.353009236788262]
We propose an optimal top-2 type algorithm for the best arm identification problem.<n>We show that the proposed algorithm is optimal as $delta rightarrow 0$.
arXiv Detail & Related papers (2024-03-14T06:14:07Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Globally Optimal Algorithms for Fixed-Budget Best Arm Identification [16.500749121196986]
We characterize the optimal rate as a result of global optimization over all possible parameters.
We show that this rate is indeed achievable by introducing a conceptual algorithm called delayed optimal tracking (DOT)
arXiv Detail & Related papers (2022-06-09T17:42:19Z) - Choosing Answers in $\varepsilon$-Best-Answer Identification for Linear
Bandits [0.8122270502556374]
In a pure-exploration problem, information is gathered sequentially to answer a question on the environment.
We show that picking the answer with highest mean does not allow an algorithm to reach optimality in terms of expected sample complexity.
We develop a simple procedure to adapt best-arm identification algorithms to tackle $varepsilon$-best-answer identification in transductive linear bandits.
arXiv Detail & Related papers (2022-06-09T12:27:51Z) - On the complexity of All $\varepsilon$-Best Arms Identification [2.1485350418225244]
We consider the problem of identifying all the $varepsilon$-optimal arms in a finite multi-armed bandit with Gaussian rewards.
We propose a Track-and-Stop algorithm that identifies the set of $varepsilon$-good arms w.h.p and enjoys optimality (when $delta$ goes to zero) in terms of the expected sample complexity.
arXiv Detail & Related papers (2022-02-13T10:54:52Z) - Optimal and instance-dependent guarantees for Markovian linear stochastic approximation [47.912511426974376]
We show a non-asymptotic bound of the order $t_mathrmmix tfracdn$ on the squared error of the last iterate of a standard scheme.
We derive corollaries of these results for policy evaluation with Markov noise.
arXiv Detail & Related papers (2021-12-23T18:47:50Z) - Mean-based Best Arm Identification in Stochastic Bandits under Reward
Contamination [80.53485617514707]
This paper proposes two algorithms, a gap-based algorithm and one based on the successive elimination, for best arm identification in sub-Gaussian bandits.
Specifically, for the gap-based algorithm, the sample complexity is optimal up to constant factors, while for the successive elimination, it is optimal up to logarithmic factors.
arXiv Detail & Related papers (2021-11-14T21:49:58Z) - Navigating to the Best Policy in Markov Decision Processes [68.8204255655161]
We investigate the active pure exploration problem in Markov Decision Processes.
Agent sequentially selects actions and, from the resulting system trajectory, aims at the best as fast as possible.
arXiv Detail & Related papers (2021-06-05T09:16:28Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm [71.13558000599839]
We study the problem of solving strongly convex and smooth unconstrained optimization problems using first-order algorithms.
We devise a novel, referred to as Recursive One-Over-T SGD, based on an easily implementable, averaging of past gradients.
We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an sense.
arXiv Detail & Related papers (2020-08-28T14:46:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.