Geometric GNNs for Charged Particle Tracking at GlueX
- URL: http://arxiv.org/abs/2505.22504v1
- Date: Wed, 28 May 2025 15:52:22 GMT
- Title: Geometric GNNs for Charged Particle Tracking at GlueX
- Authors: Ahmed Hossam Mohammed, Kishansingh Rajput, Simon Taylor, Denis Furletov, Sergey Furletov, Malachi Schram,
- Abstract summary: We evaluate the GNN model for track finding on the data from the GlueX experiment at Jefferson Lab.<n>We show that the GNN model can achieve significant speedup by processing multiple events in batches.
- Score: 0.4241054493737716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nuclear physics experiments are aimed at uncovering the fundamental building blocks of matter. The experiments involve high-energy collisions that produce complex events with many particle trajectories. Tracking charged particles resulting from collisions in the presence of a strong magnetic field is critical to enable the reconstruction of particle trajectories and precise determination of interactions. It is traditionally achieved through combinatorial approaches that scale worse than linearly as the number of hits grows. Since particle hit data naturally form a 3-dimensional point cloud and can be structured as graphs, Graph Neural Networks (GNNs) emerge as an intuitive and effective choice for this task. In this study, we evaluate the GNN model for track finding on the data from the GlueX experiment at Jefferson Lab. We use simulation data to train the model and test on both simulation and real GlueX measurements. We demonstrate that GNN-based track finding outperforms the currently used traditional method at GlueX in terms of segment-based efficiency at a fixed purity while providing faster inferences. We show that the GNN model can achieve significant speedup by processing multiple events in batches, which exploits the parallel computation capability of Graphical Processing Units (GPUs). Finally, we compare the GNN implementation on GPU and FPGA and describe the trade-off.
Related papers
- Scaling Graph Neural Networks for Particle Track Reconstruction [0.0]
We introduce improvements to the Exa.TrkX pipeline to train on samples of input particle graphs.<n>We adapt performance optimizations, introduced for GNN training, to fit our augmented Exa.TrkX pipeline.
arXiv Detail & Related papers (2025-04-07T01:44:32Z) - Spiking Graph Neural Network on Riemannian Manifolds [51.15400848660023]
Graph neural networks (GNNs) have become the dominant solution for learning on graphs.
Existing spiking GNNs consider graphs in Euclidean space, ignoring the structural geometry.
We present a Manifold-valued Spiking GNN (MSG)
MSG achieves superior performance to previous spiking GNNs and energy efficiency to conventional GNNs.
arXiv Detail & Related papers (2024-10-23T15:09:02Z) - Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
Graph neural networks (GNNs) have demonstrated their effectiveness in various tasks supported by their generalization capabilities.
In this paper, we examine GNNs that operate on geometric graphs generated from manifold models.
Our analysis reveals the robustness of the GNN generalization in the presence of such model mismatch.
arXiv Detail & Related papers (2024-08-25T16:00:44Z) - Improved particle-flow event reconstruction with scalable neural networks for current and future particle detectors [1.4609888393206634]
We study scalable machine learning models for event reconstruction in electron-positron collisions based on a full detector simulation.
We compare a graph neural network and kernel-based transformer and demonstrate that we can avoid operations while achieving realistic reconstruction.
The best graph neural network model shows improvement in the jet transverse momentum resolution by up to 50% compared to the rule-based algorithm.
arXiv Detail & Related papers (2023-09-13T08:16:15Z) - Graph Neural Networks-based Hybrid Framework For Predicting Particle
Crushing Strength [31.05985193732974]
We use Graph Neural Networks to characterize the mechanical behaviors of particle crushing.
We devise a hybrid framework based on GNNs to predict particle crushing strength in a particle fragment view.
Our data and code are released at https://github.com/doujiang-zheng/GNN-For-Particle-Crushing.
arXiv Detail & Related papers (2023-07-26T02:18:04Z) - Equivariant Graph Neural Networks for Charged Particle Tracking [1.6626046865692057]
EuclidNet is a novel symmetry-equivariant GNN for charged particle tracking.
We benchmark it against the state-of-the-art Interaction Network on the TrackML dataset.
Our results show that EuclidNet achieves near-state-of-the-art performance at small model scales.
arXiv Detail & Related papers (2023-04-11T15:43:32Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
Large-scale graph training is a notoriously challenging problem for graph neural networks (GNNs)
We present a new ensembling training manner, named EnGCN, to address the existing issues.
Our proposed method has achieved new state-of-the-art (SOTA) performance on large-scale datasets.
arXiv Detail & Related papers (2022-10-14T03:43:05Z) - Transformer with Implicit Edges for Particle-based Physics Simulation [135.77656965678196]
Transformer with Implicit Edges (TIE) captures the rich semantics of particle interactions in an edge-free manner.
We evaluate our model on diverse domains of varying complexity and materials.
arXiv Detail & Related papers (2022-07-22T03:45:29Z) - Towards Quantum Graph Neural Networks: An Ego-Graph Learning Approach [47.19265172105025]
We propose a novel hybrid quantum-classical algorithm for graph-structured data, which we refer to as the Ego-graph based Quantum Graph Neural Network (egoQGNN)
egoQGNN implements the GNN theoretical framework using the tensor product and unity matrix representation, which greatly reduces the number of model parameters required.
The architecture is based on a novel mapping from real-world data to Hilbert space.
arXiv Detail & Related papers (2022-01-13T16:35:45Z) - Transferability Properties of Graph Neural Networks [125.71771240180654]
Graph neural networks (GNNs) are provably successful at learning representations from data supported on moderate-scale graphs.
We study the problem of training GNNs on graphs of moderate size and transferring them to large-scale graphs.
Our results show that (i) the transference error decreases with the graph size, and (ii) that graph filters have a transferability-discriminability tradeoff that in GNNs is alleviated by the scattering behavior of the nonlinearity.
arXiv Detail & Related papers (2021-12-09T00:08:09Z) - Graph Neural Networks for Charged Particle Tracking on FPGAs [2.6402980149746913]
The determination of charged particle trajectories in collisions at the CERN Large Hadron Collider (LHC) is an important but challenging problem.
Graph neural networks (GNNs) are a type of geometric deep learning algorithm that has successfully been applied to this task.
We introduce an automated translation workflow, integrated into a broader tool called $textthls4ml$, for converting GNNs into firmware for field-programmable gate arrays (FPGAs)
arXiv Detail & Related papers (2021-12-03T17:56:10Z) - ForceNet: A Graph Neural Network for Large-Scale Quantum Calculations [86.41674945012369]
We develop a scalable and expressive Graph Neural Networks model, ForceNet, to approximate atomic forces.
Our proposed ForceNet is able to predict atomic forces more accurately than state-of-the-art physics-based GNNs.
arXiv Detail & Related papers (2021-03-02T03:09:06Z) - Scalable Graph Networks for Particle Simulations [1.933681537640272]
We introduce an approach that transforms a fully-connected interaction graph into a hierarchical one.
Using our approach, we are able to train models on much larger particle counts, even on a single GPU.
Our approach retains high accuracy and efficiency even on large-scale gravitational N-body simulations.
arXiv Detail & Related papers (2020-10-14T10:54:54Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.