IGNIS: A Robust Neural Network Framework for Constrained Parameter Estimation in Archimedean Copulas
- URL: http://arxiv.org/abs/2505.22518v3
- Date: Mon, 28 Jul 2025 08:58:45 GMT
- Title: IGNIS: A Robust Neural Network Framework for Constrained Parameter Estimation in Archimedean Copulas
- Authors: Agnideep Aich,
- Abstract summary: We introduce IGNIS, a unified neural estimation framework for Archimedean copulas.<n> IGNIS learns a direct, robust mapping from data-driven dependency measures to the underlying copula parameter theta.<n>It delivers accurate and stable estimates for real-world financial and health datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classical estimators, the cornerstones of statistical inference, face insurmountable challenges when applied to important emerging classes of Archimedean copulas. These models exhibit pathological properties, including numerically unstable densities, non-monotonic parameter-to-dependence mappings, and vanishingly small likelihood gradients, rendering methods like Maximum Likelihood (MLE) and Method of Moments (MoM) inconsistent or computationally infeasible. We introduce IGNIS, a unified neural estimation framework that sidesteps these barriers by learning a direct, robust mapping from data-driven dependency measures to the underlying copula parameter theta. IGNIS utilizes a multi-input architecture and a theory-guided output layer (softplus(z) + 1) to automatically enforce the domain constraint theta_hat >= 1. Trained and validated on four families (Gumbel, Joe, and the numerically challenging A1/A2), IGNIS delivers accurate and stable estimates for real-world financial and health datasets, demonstrating its necessity for reliable inference in modern, complex dependence models where traditional methods fail.
Related papers
- History-Aware Neural Operator: Robust Data-Driven Constitutive Modeling of Path-Dependent Materials [4.331871667093061]
This study presents an end-to-end learning framework for data-driven modeling of inelastic materials using neural operators.<n>We develop the History-Aware Neural Operator (HANO), an autoregressive model that predicts path-dependent material responses from short segments of recent strain-stress history.<n>We evaluate HANO on two benchmark problems: elastoplasticity with hardening and progressive anisotropic damage in brittle solids.
arXiv Detail & Related papers (2025-06-12T05:19:17Z) - Data-driven multi-agent modelling of calcium interactions in cell culture: PINN vs Regularized Least-squares [1.6712896227173806]
We propose a methodology for characterization and performance analysis of calcium delivery in a family of cells.<n>We compare the performance of the Constrained Regularized Least-Squares Method (CRLSM) and Physics-Informed Neural Networks (PINN) for system identification and parameter discovery.
arXiv Detail & Related papers (2025-05-23T19:41:12Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.<n>The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.<n>The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - EPi-cKANs: Elasto-Plasticity Informed Kolmogorov-Arnold Networks Using Chebyshev Polynomials [0.0]
We present an elasto-plasticity informed Chebyshev-based network (EPi-cKAN)
EPi-cKAN provides superior accuracy in predicting stress components and demonstrates better accuracy when used to predict sand elasto-plastic behavior under blind triaxial axisymmetric strain-controlled loading paths.
arXiv Detail & Related papers (2024-10-12T16:01:38Z) - Kolmogorov-Arnold Networks in Low-Data Regimes: A Comparative Study with Multilayer Perceptrons [2.77390041716769]
Kolmogorov-Arnold Networks (KANs) use highly flexible learnable activation functions directly on network edges.
KANs significantly increase the number of learnable parameters, raising concerns about their effectiveness in data-scarce environments.
We show that individualized activation functions achieve significantly higher predictive accuracy with only a modest increase in parameters.
arXiv Detail & Related papers (2024-09-16T16:56:08Z) - Graph Neural PDE Solvers with Conservation and Similarity-Equivariance [6.077284832583712]
This study introduces a novel machine-learning architecture that is highly generalizable and adheres to conservation laws and physical symmetries.
The foundation of this architecture is graph neural networks (GNNs), which are adept at accommodating a variety of shapes and forms.
arXiv Detail & Related papers (2024-05-25T11:18:27Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Max-Sliced Mutual Information [17.667315953598788]
Quantifying the dependence between high-dimensional random variables is central to statistical learning and inference.
Two classical methods are canonical correlation analysis (CCA), which identifies maximally correlated projected versions of the original variables, and Shannon's mutual information, which is a universal dependence measure.
This work proposes a middle ground in the form of a scalable information-theoretic generalization of CCA, termed max-sliced mutual information (mSMI)
arXiv Detail & Related papers (2023-09-28T06:49:25Z) - Neural Dependencies Emerging from Learning Massive Categories [94.77992221690742]
This work presents two astonishing findings on neural networks learned for large-scale image classification.
1) Given a well-trained model, the logits predicted for some category can be directly obtained by linearly combining the predictions of a few other categories.
2) Neural dependencies exist not only within a single model, but even between two independently learned models.
arXiv Detail & Related papers (2022-11-21T09:42:15Z) - Quantile-constrained Wasserstein projections for robust interpretability
of numerical and machine learning models [18.771531343438227]
The study of black-box models is often based on sensitivity analysis involving a probabilistic structure imposed on the inputs.
Our work aim at unifying the UQ and ML interpretability approaches, by providing relevant and easy-to-use tools for both paradigms.
arXiv Detail & Related papers (2022-09-23T11:58:03Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - The Franz-Parisi Criterion and Computational Trade-offs in High
Dimensional Statistics [73.1090889521313]
This paper aims to make a rigorous connection between the different low-degree and free-energy based approaches.
We define a free-energy based criterion for hardness and formally connect it to the well-established notion of low-degree hardness.
Results provide both conceptual insights into the connections between different notions of hardness, as well as concrete technical tools.
arXiv Detail & Related papers (2022-05-19T17:39:29Z) - Surrogate Modeling for Physical Systems with Preserved Properties and
Adjustable Tradeoffs [0.0]
We present a model-based and a data-driven strategy to generate surrogate models.
The latter generates interpretable surrogate models by fitting artificial relations to a presupposed topological structure.
Our framework is compatible with various spatial discretization schemes for distributed parameter models.
arXiv Detail & Related papers (2022-02-02T17:07:02Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
offline reinforcement learning approaches can be divided into proximal and uncertainty-aware methods.
In this work, we demonstrate the benefit of combining the two in a latent variational model.
Our proposed metrics measure both the quality of out of distribution samples as well as the discrepancy of examples in the data.
arXiv Detail & Related papers (2021-02-22T19:42:40Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Parameterized MDPs and Reinforcement Learning Problems -- A Maximum
Entropy Principle Based Framework [2.741266294612776]
We present a framework to address a class of sequential decision making problems.
Our framework features learning the optimal control policy with robustness to noisy data.
arXiv Detail & Related papers (2020-06-17T04:08:35Z) - Neural Methods for Point-wise Dependency Estimation [129.93860669802046]
We focus on estimating point-wise dependency (PD), which quantitatively measures how likely two outcomes co-occur.
We demonstrate the effectiveness of our approaches in 1) MI estimation, 2) self-supervised representation learning, and 3) cross-modal retrieval task.
arXiv Detail & Related papers (2020-06-09T23:26:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.