論文の概要: Agent-UniRAG: A Trainable Open-Source LLM Agent Framework for Unified Retrieval-Augmented Generation Systems
- arxiv url: http://arxiv.org/abs/2505.22571v1
- Date: Wed, 28 May 2025 16:46:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:50.742467
- Title: Agent-UniRAG: A Trainable Open-Source LLM Agent Framework for Unified Retrieval-Augmented Generation Systems
- Title(参考訳): Agent-UniRAG: 統一検索拡張システムのためのトレーニング可能なオープンソースLLMエージェントフレームワーク
- Authors: Hoang Pham, Khac-Hoai Nam Bui,
- Abstract要約: 本稿では,最近の大規模言語モデル (LLM) エージェントの概念を用いたRAGシステムに対する新しいアプローチを提案する。
本稿では,統合検索拡張LLMシステムのためのエージェントUniRAGと呼ばれるトレーニング可能なエージェントフレームワークを提案する。
主なアイデアは、入力の複雑さに基づいてRAGタスクを段階的に解決するLLMエージェントフレームワークを設計することである。
- 参考スコア(独自算出の注目度): 4.343110120255532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel approach for unified retrieval-augmented generation (RAG) systems using the recent emerging large language model (LLM) agent concept. Specifically, Agent LLM, which utilizes LLM as fundamental controllers, has become a promising approach to enable the interpretability of RAG tasks, especially for complex reasoning question-answering systems (e.g., multi-hop queries). Nonetheless, previous works mainly focus on solving RAG systems with either single-hop or multi-hop approaches separately, which limits the application of those approaches to real-world applications. In this study, we propose a trainable agent framework called Agent-UniRAG for unified retrieval-augmented LLM systems, which enhances the effectiveness and interpretability of RAG systems. The main idea is to design an LLM agent framework to solve RAG tasks step-by-step based on the complexity of the inputs, simultaneously including single-hop and multi-hop queries in an end-to-end manner. Furthermore, we introduce SynAgent-RAG, a synthetic dataset to enable the proposed agent framework for small open-source LLMs (e.g., Llama-3-8B). The results show comparable performances with closed-source and larger open-source LLMs across various RAG benchmarks. Our source code and dataset are publicly available for further exploitation.
- Abstract(参考訳): 本稿では,最近の大規模言語モデル (LLM) エージェントの概念を用いたRAGシステムに対する新しいアプローチを提案する。
具体的には, LLM を基本制御器として利用するエージェント LLM は,RAG タスクの解釈可能性,特に複雑な推論質問応答システム(マルチホップクエリなど)において,有望なアプローチとなっている。
それにもかかわらず、以前の研究は主に、単一のホップまたはマルチホップのアプローチでRAGシステムを解くことに焦点を当てており、現実のアプリケーションへのこれらのアプローチの適用を制限している。
本研究では,RAGシステムの有効性と解釈性を向上する統合検索拡張LLMシステムのための,エージェントUniRAGと呼ばれる訓練可能なエージェントフレームワークを提案する。
第一の考え方は、入力の複雑さに基づいてRAGタスクを段階的に解決するLLMエージェントフレームワークを設計し、エンドツーエンドでシングルホップとマルチホップクエリを同時に含むことである。
さらに,SynAgent-RAGという合成データセットを導入し,LLM(例えばLlama-3-8B)のためのエージェントフレームワークを提案する。
その結果、様々なRAGベンチマークにおいて、クローズドソースおよびより大きなオープンソースLLMと同等の性能を示した。
ソースコードとデータセットは、さらなるエクスプロイトのために公開されています。
関連論文リスト
- Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
人間のフィードバックからの強化学習は、大規模言語モデルを整合させる効果的な手法として現れてきた。
制御された復号化は、再訓練せずに推論時にモデルを整列するメカニズムを提供する。
本稿では,既存の既成のLCMポリシを活用するエージェントベースのデコーディング戦略の混合を提案する。
論文 参考訳(メタデータ) (2025-03-27T17:34:25Z) - Talk Structurally, Act Hierarchically: A Collaborative Framework for LLM Multi-Agent Systems [10.67359331022116]
textitTalk 構造的には、Act Hierarchically (TalkHier) はコンテキスト豊富な交換のための構造化通信プロトコルを導入する新しいフレームワークである。
textitTalkHierは、推論スケーリングモデル(OpenAI-o1)、オープンソースのマルチエージェントモデル(AgentVerseなど)など、さまざまな種類のSoTAを追い越している。
論文 参考訳(メタデータ) (2025-02-16T12:26:58Z) - LaRA: Benchmarking Retrieval-Augmented Generation and Long-Context LLMs -- No Silver Bullet for LC or RAG Routing [70.35888047551643]
本稿では,RAGとLC LLMを厳格に比較するための新しいベンチマークであるLaRAを提案する。
LaRAは4つのQAタスクカテゴリと3種類の自然発生長文の2326のテストケースを含んでいる。
RAGとLCの最適選択は,モデルのパラメータサイズ,長文機能,コンテキスト長,タスクタイプ,取得したチャンクの特性など,複雑な相互作用に依存する。
論文 参考訳(メタデータ) (2025-02-14T08:04:22Z) - C-3PO: Compact Plug-and-Play Proxy Optimization to Achieve Human-like Retrieval-Augmented Generation [13.120930059424975]
C-3POは、レトリバーと大規模言語モデル間の通信を容易にするプロキシ中心のフレームワークである。
我々のフレームワークは、RAGパイプライン全体を協調的に最適化する3つの特殊エージェントを実装している。
論文 参考訳(メタデータ) (2025-02-10T07:04:32Z) - Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning [51.54046200512198]
Retrieval-augmented Generation (RAG) は、外部の現在の知識を大規模言語モデルに組み込むために広く利用されている。
標準的なRAGパイプラインは、クエリ書き換え、文書検索、文書フィルタリング、回答生成など、いくつかのコンポーネントから構成される。
これらの課題を克服するため,RAGパイプラインを多エージェント協調作業として,各コンポーネントをRLエージェントとして扱うことを提案する。
論文 参考訳(メタデータ) (2025-01-25T14:24:50Z) - ERATTA: Extreme RAG for Table To Answers with Large Language Models [1.3318204310917532]
検索拡張現実(RAG)を備えた大規模言語モデル(LLM)は、スケーラブルな生成AIソリューションに最適な選択肢である。
本研究では,データ認証,ユーザクエリルーティング,データ検索,エンタープライズデータテーブルからの質問応答機能へのカスタムプロンプトを実現するために,複数のLLMを起動可能なLLMベースのユニークなシステムを提案する。
提案するシステムと評価基準は,持続可能性,財務状況,ソーシャルメディア領域において,数百のユーザクエリに対して,90%以上の信頼性スコアを達成している。
論文 参考訳(メタデータ) (2024-05-07T02:49:59Z) - AgentLite: A Lightweight Library for Building and Advancing
Task-Oriented LLM Agent System [91.41155892086252]
LLMエージェントの研究を簡略化する新しいAIエージェントライブラリであるAgentLiteをオープンソースとして公開する。
AgentLiteは、タスクを分解するエージェントの機能を強化するために設計されたタスク指向フレームワークである。
我々は,その利便性と柔軟性を示すために,AgentLiteで開発された実用アプリケーションを紹介した。
論文 参考訳(メタデータ) (2024-02-23T06:25:20Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。