論文の概要: Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2501.15228v1
- Date: Sat, 25 Jan 2025 14:24:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:57:48.581455
- Title: Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning
- Title(参考訳): マルチエージェント強化学習による検索強化生成の改善
- Authors: Yiqun Chen, Lingyong Yan, Weiwei Sun, Xinyu Ma, Yi Zhang, Shuaiqiang Wang, Dawei Yin, Yiming Yang, Jiaxin Mao,
- Abstract要約: Retrieval-augmented Generation (RAG) は、外部の現在の知識を大規模言語モデルに組み込むために広く利用されている。
標準的なRAGパイプラインは、クエリ書き換え、文書検索、文書フィルタリング、回答生成など、いくつかのコンポーネントから構成される。
これらの課題を克服するため,RAGパイプラインを多エージェント協調作業として,各コンポーネントをRLエージェントとして扱うことを提案する。
- 参考スコア(独自算出の注目度): 51.54046200512198
- License:
- Abstract: Retrieval-augmented generation (RAG) is extensively utilized to incorporate external, current knowledge into large language models, thereby minimizing hallucinations. A standard RAG pipeline may comprise several components, such as query rewriting, document retrieval, document filtering, and answer generation. However, these components are typically optimized separately through supervised fine-tuning, which can lead to misalignments between the objectives of individual modules and the overarching aim of generating accurate answers in question-answering (QA) tasks. Although recent efforts have explored reinforcement learning (RL) to optimize specific RAG components, these approaches often focus on overly simplistic pipelines with only two components or do not adequately address the complex interdependencies and collaborative interactions among the modules. To overcome these challenges, we propose treating the RAG pipeline as a multi-agent cooperative task, with each component regarded as an RL agent. Specifically, we present MMOA-RAG, a Multi-Module joint Optimization Algorithm for RAG, which employs multi-agent reinforcement learning to harmonize all agents' goals towards a unified reward, such as the F1 score of the final answer. Experiments conducted on various QA datasets demonstrate that MMOA-RAG improves the overall pipeline performance and outperforms existing baselines. Furthermore, comprehensive ablation studies validate the contributions of individual components and the adaptability of MMOA-RAG across different RAG components and datasets. The code of MMOA-RAG is on https://github.com/chenyiqun/MMOA-RAG.
- Abstract(参考訳): Retrieval-augmented Generation (RAG) は、外部の現在の知識を大きな言語モデルに組み込むことで、幻覚を最小化する。
標準的なRAGパイプラインは、クエリ書き換え、文書検索、文書フィルタリング、回答生成など、いくつかのコンポーネントから構成される。
しかしながら、これらのコンポーネントは通常、教師付き微調整によって個別に最適化されるため、個々のモジュールの目的と、質問応答(QA)タスクにおいて正確な回答を生成するという全体的目的の相違につながる可能性がある。
近年、特定のRAGコンポーネントを最適化するための強化学習(RL)の研究が進められているが、これらのアプローチは2つのコンポーネントしか持たない過度に単純化されたパイプラインに焦点を当てたり、モジュール間の複雑な相互依存性や協調的な相互作用に適切に対処しない場合が多い。
これらの課題を克服するため,RAGパイプラインを多エージェント協調作業として,各コンポーネントをRLエージェントとして扱うことを提案する。
具体的には,MMOA-RAG(Multi-Module joint Optimization Algorithm for RAG)を提案する。MMOA-RAGはマルチエージェント強化学習を用いて,最終回答のF1スコアなど,エージェントの目標を統一的な報酬に調和させる。
さまざまなQAデータセットで実施された実験は、MMOA-RAGがパイプライン全体のパフォーマンスを改善し、既存のベースラインを上回っていることを示している。
さらに、包括的アブレーション研究は、個々のコンポーネントの寄与と、異なるRAGコンポーネントとデータセット間のMMOA-RAGの適合性を検証する。
MMOA-RAGのコードはhttps://github.com/chenyiqun/MMOA-RAGにある。
関連論文リスト
- mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
マルチモーダル検索拡張生成(mRAG)はMLLMに包括的で最新の知識を提供するために自然に導入されている。
我々は、適応的検索と有用な情報ローカライゼーションを実現する textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) という新しいフレームワークを提案する。
mR$2$AG は INFOSEEK と Encyclopedic-VQA の最先端MLLM を著しく上回る
論文 参考訳(メタデータ) (2024-11-22T16:15:50Z) - RAG-DDR: Optimizing Retrieval-Augmented Generation Using Differentiable Data Rewards [78.74923079748521]
Retrieval-Augmented Generation (RAG) は、Large Language Models (LLMs) における幻覚を緩和する効果を証明している。
現在のアプローチでは、命令チューニングを使用してLLMを最適化し、検索した知識を活用する能力を改善している。
本稿では,異なるRAGモジュール間でデータ嗜好を整列させることでRAGシステムを訓練するDDR法を提案する。
論文 参考訳(メタデータ) (2024-10-17T12:53:29Z) - Self-adaptive Multimodal Retrieval-Augmented Generation [0.0]
我々は,自己適応型マルチモーダル検索型生成(SAM-RAG)という新しい手法を提案する。
SAM-RAGは、必要なときに画像キャプションを含む入力クエリに基づいて関連文書を動的にフィルタリングするだけでなく、検索した文書と出力の両方の品質を検証する。
その結果,SAM-RAGは検索精度と応答生成の両面で既存の最先端手法を上回ることがわかった。
論文 参考訳(メタデータ) (2024-10-15T06:39:35Z) - Learning to Rank for Multiple Retrieval-Augmented Models through Iterative Utility Maximization [21.115495457454365]
本稿では,複数検索拡張世代(RAG)エージェントを対象とした統合検索エンジンの設計について検討する。
本稿では,これらのRAGエージェントの検索結果を検索エンジンが生成し,オフラインで検索した文書の品質に関するフィードバックを収集する反復的手法を提案する。
我々は、このアプローチをオンライン環境に適応させ、リアルタイムな個別エージェントのフィードバックに基づいて、検索エンジンがその振る舞いを洗練できるようにする。
論文 参考訳(メタデータ) (2024-10-13T17:53:50Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [13.638439488923671]
検索拡張生成(RAG)は大規模言語モデル(LLM)の能力を向上させる
既存のRAGソリューションは、実質的に異なる内容の複数のドキュメントを取得する必要がある可能性のあるクエリに焦点を当てていない。
本稿では,このギャップをシンプルかつ強力なアイデアで解決する新しい手法として,MRAG(Multi-Head RAG)を提案する。
論文 参考訳(メタデータ) (2024-06-07T16:59:38Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z) - Plug-and-Play Regulators for Image-Text Matching [76.28522712930668]
微細な対応と視覚的セマンティックなアライメントの爆発は、画像とテキストのマッチングにおいて大きな可能性を秘めている。
我々は、メッセージ出力を効率的にエンコードして、コンテキストを自動生成し、モーダル表現を集約する、シンプルだが非常に効果的な2つのレギュレータを開発した。
MSCOCOとFlickr30Kデータセットの実験は、複数のモデルで印象的で一貫したR@1ゲインをもたらすことができることを実証している。
論文 参考訳(メタデータ) (2023-03-23T15:42:05Z) - Towards Lightweight Cross-domain Sequential Recommendation via External
Attention-enhanced Graph Convolution Network [7.1102362215550725]
クロスドメインシークエンシャルレコメンデーション(CSR)は、複数のドメインからのインタラクションをモデル化することで、重複したユーザの振る舞いパターンの進化を描いている。
上記の課題,すなわちLEA-GCNを解決するために,軽量な外部注意強化GCNベースのフレームワークを導入する。
フレームワークの構造をさらに緩和し、ユーザ固有のシーケンシャルパターンを集約するために、新しい二重チャネル外部注意(EA)コンポーネントを考案する。
論文 参考訳(メタデータ) (2023-02-07T03:06:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。