論文の概要: Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2501.15228v1
- Date: Sat, 25 Jan 2025 14:24:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 21:57:03.574982
- Title: Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning
- Title(参考訳): マルチエージェント強化学習による検索強化生成の改善
- Authors: Yiqun Chen, Lingyong Yan, Weiwei Sun, Xinyu Ma, Yi Zhang, Shuaiqiang Wang, Dawei Yin, Yiming Yang, Jiaxin Mao,
- Abstract要約: Retrieval-augmented Generation (RAG) は、外部の現在の知識を大規模言語モデルに組み込むために広く利用されている。
標準的なRAGパイプラインは、クエリ書き換え、文書検索、文書フィルタリング、回答生成など、いくつかのコンポーネントから構成される。
これらの課題を克服するため,RAGパイプラインを多エージェント協調作業として,各コンポーネントをRLエージェントとして扱うことを提案する。
- 参考スコア(独自算出の注目度): 51.54046200512198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-augmented generation (RAG) is extensively utilized to incorporate external, current knowledge into large language models, thereby minimizing hallucinations. A standard RAG pipeline may comprise several components, such as query rewriting, document retrieval, document filtering, and answer generation. However, these components are typically optimized separately through supervised fine-tuning, which can lead to misalignments between the objectives of individual modules and the overarching aim of generating accurate answers in question-answering (QA) tasks. Although recent efforts have explored reinforcement learning (RL) to optimize specific RAG components, these approaches often focus on overly simplistic pipelines with only two components or do not adequately address the complex interdependencies and collaborative interactions among the modules. To overcome these challenges, we propose treating the RAG pipeline as a multi-agent cooperative task, with each component regarded as an RL agent. Specifically, we present MMOA-RAG, a Multi-Module joint Optimization Algorithm for RAG, which employs multi-agent reinforcement learning to harmonize all agents' goals towards a unified reward, such as the F1 score of the final answer. Experiments conducted on various QA datasets demonstrate that MMOA-RAG improves the overall pipeline performance and outperforms existing baselines. Furthermore, comprehensive ablation studies validate the contributions of individual components and the adaptability of MMOA-RAG across different RAG components and datasets. The code of MMOA-RAG is on https://github.com/chenyiqun/MMOA-RAG.
- Abstract(参考訳): Retrieval-augmented Generation (RAG) は、外部の現在の知識を大きな言語モデルに組み込むことで、幻覚を最小化する。
標準的なRAGパイプラインは、クエリ書き換え、文書検索、文書フィルタリング、回答生成など、いくつかのコンポーネントから構成される。
しかしながら、これらのコンポーネントは通常、教師付き微調整によって個別に最適化されるため、個々のモジュールの目的と、質問応答(QA)タスクにおいて正確な回答を生成するという全体的目的の相違につながる可能性がある。
近年、特定のRAGコンポーネントを最適化するための強化学習(RL)の研究が進められているが、これらのアプローチは2つのコンポーネントしか持たない過度に単純化されたパイプラインに焦点を当てたり、モジュール間の複雑な相互依存性や協調的な相互作用に適切に対処しない場合が多い。
これらの課題を克服するため,RAGパイプラインを多エージェント協調作業として,各コンポーネントをRLエージェントとして扱うことを提案する。
具体的には,MMOA-RAG(Multi-Module joint Optimization Algorithm for RAG)を提案する。MMOA-RAGはマルチエージェント強化学習を用いて,最終回答のF1スコアなど,エージェントの目標を統一的な報酬に調和させる。
さまざまなQAデータセットで実施された実験は、MMOA-RAGがパイプライン全体のパフォーマンスを改善し、既存のベースラインを上回っていることを示している。
さらに、包括的アブレーション研究は、個々のコンポーネントの寄与と、異なるRAGコンポーネントとデータセット間のMMOA-RAGの適合性を検証する。
MMOA-RAGのコードはhttps://github.com/chenyiqun/MMOA-RAGにある。
関連論文リスト
- UniversalRAG: Retrieval-Augmented Generation over Multiple Corpora with Diverse Modalities and Granularities [53.76854299076118]
UniversalRAGは異種情報源からの知識を多様さと粒度で検索・統合するための新しいRAGフレームワークである。
本稿では,最も適切なモダリティ固有コーパスを動的に識別し,その内部でターゲット検索を行うモダリティ対応ルーティング機構を提案する。
複数のモダリティにまたがる8つのベンチマークでUniversalRAGを検証する。
論文 参考訳(メタデータ) (2025-04-29T13:18:58Z) - HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation [11.53083922927901]
HM-RAGは階層型マルチエージェントマルチモーダルRAGフレームワークである。
構造化、非構造化、グラフベースのデータ間での動的知識合成のための協調知能の先駆者である。
論文 参考訳(メタデータ) (2025-04-13T06:55:33Z) - C-3PO: Compact Plug-and-Play Proxy Optimization to Achieve Human-like Retrieval-Augmented Generation [13.120930059424975]
C-3POは、レトリバーと大規模言語モデル間の通信を容易にするプロキシ中心のフレームワークである。
我々のフレームワークは、RAGパイプライン全体を協調的に最適化する3つの特殊エージェントを実装している。
論文 参考訳(メタデータ) (2025-02-10T07:04:32Z) - Talk to Right Specialists: Routing and Planning in Multi-agent System for Question Answering [47.29580414645626]
RopMuraは、複数の知識ベースを統一的なRAGベースのエージェントに統合する、新しいマルチエージェントシステムである。
RopMuraには2つの重要なコンポーネントがある。知識境界に基づいて最も関連性の高いエージェントをインテリジェントに選択するルータと、複雑なマルチホップクエリを管理可能なステップに分解するプランナだ。
論文 参考訳(メタデータ) (2025-01-14T03:25:26Z) - MAIN-RAG: Multi-Agent Filtering Retrieval-Augmented Generation [34.66546005629471]
大規模言語モデル(LLM)は、様々な自然言語処理タスクに不可欠なツールであるが、時代遅れや誤った情報の生成に悩まされることが多い。
Retrieval-Augmented Generation (RAG)は、外部のリアルタイム情報検索をLLM応答に組み込むことでこの問題に対処する。
この問題に対処するため,マルチエージェントフィルタ検索検索生成(MAIN-RAG)を提案する。
MAIN-RAGはトレーニング不要なRAGフレームワークで、複数のLCMエージェントを利用して検索した文書のフィルタリングとスコア付けを行う。
論文 参考訳(メタデータ) (2024-12-31T08:07:26Z) - XRAG: eXamining the Core -- Benchmarking Foundational Components in Advanced Retrieval-Augmented Generation [37.78210992036775]
Retrieval-augmented Generation (RAG) は、Large Language Models (LLMs) の生成能力と関連するデータの検索を相乗化する
我々は,高度なRAGモジュールの基本コンポーネントの性能を徹底的に評価する,オープンソースのモジュールであるXRAGを紹介する。
論文 参考訳(メタデータ) (2024-12-20T03:37:07Z) - mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
マルチモーダル検索拡張生成(mRAG)はMLLMに包括的で最新の知識を提供するために自然に導入されている。
我々は、適応的検索と有用な情報ローカライゼーションを実現する textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) という新しいフレームワークを提案する。
mR$2$AG は INFOSEEK と Encyclopedic-VQA の最先端MLLM を著しく上回る
論文 参考訳(メタデータ) (2024-11-22T16:15:50Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [13.638439488923671]
検索拡張生成(RAG)は大規模言語モデル(LLM)の能力を向上させる
既存のRAGソリューションは、実質的に異なる内容の複数のドキュメントを取得する必要がある可能性のあるクエリに焦点を当てていない。
本稿では,このギャップをシンプルかつ強力なアイデアで解決する新しい手法として,MRAG(Multi-Head RAG)を提案する。
論文 参考訳(メタデータ) (2024-06-07T16:59:38Z) - FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation Research [70.6584488911715]
検索増強世代(RAG)は、かなりの研究関心を集めている。
既存のRAGツールキットは、しばしば重くて柔軟であり、研究者のカスタマイズのニーズを満たすことができない。
我々のツールキットは16の高度なRAGメソッドを実装し、38のベンチマークデータセットを収集し、整理した。
論文 参考訳(メタデータ) (2024-05-22T12:12:40Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z) - Plug-and-Play Regulators for Image-Text Matching [76.28522712930668]
微細な対応と視覚的セマンティックなアライメントの爆発は、画像とテキストのマッチングにおいて大きな可能性を秘めている。
我々は、メッセージ出力を効率的にエンコードして、コンテキストを自動生成し、モーダル表現を集約する、シンプルだが非常に効果的な2つのレギュレータを開発した。
MSCOCOとFlickr30Kデータセットの実験は、複数のモデルで印象的で一貫したR@1ゲインをもたらすことができることを実証している。
論文 参考訳(メタデータ) (2023-03-23T15:42:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。