Machine Unlearning under Overparameterization
- URL: http://arxiv.org/abs/2505.22601v1
- Date: Wed, 28 May 2025 17:14:57 GMT
- Title: Machine Unlearning under Overparameterization
- Authors: Jacob L. Block, Aryan Mokhtari, Sanjay Shakkottai,
- Abstract summary: Machine unlearning algorithms aim to remove the influence of specific samples, ideally recovering the model that would have resulted from the remaining data alone.<n>We unlearning in a training overolate setting, where many models interpolate and retain data.<n>We provide exact and approximate classes, and we demonstrate our framework across various unlearning experiments.
- Score: 35.031020618251965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine unlearning algorithms aim to remove the influence of specific training samples, ideally recovering the model that would have resulted from training on the remaining data alone. We study unlearning in the overparameterized setting, where many models interpolate the data, and defining the unlearning solution as any loss minimizer over the retained set$\unicode{x2013}$as in prior work in the underparameterized setting$\unicode{x2013}$is inadequate, since the original model may already interpolate the retained data and satisfy this condition. In this regime, loss gradients vanish, rendering prior methods based on gradient perturbations ineffective, motivating both new unlearning definitions and algorithms. For this setting, we define the unlearning solution as the minimum-complexity interpolator over the retained data and propose a new algorithmic framework that only requires access to model gradients on the retained set at the original solution. We minimize a regularized objective over perturbations constrained to be orthogonal to these model gradients, a first-order relaxation of the interpolation condition. For different model classes, we provide exact and approximate unlearning guarantees, and we demonstrate that an implementation of our framework outperforms existing baselines across various unlearning experiments.
Related papers
- Go Beyond Your Means: Unlearning with Per-Sample Gradient Orthogonalization [43.436621884831276]
Machine unlearning aims to remove the influence of problematic training data after a model has been trained.<n>Many existing machine unlearning methods address this challenge by carefully balancing gradient ascent on the unlearn data with the gradient descent on a retain set representing the training data.<n>Here, we propose OrthoGrad, a novel approach that mitigates interference between the unlearn set and the retain set rather than competing ascent and descent processes.
arXiv Detail & Related papers (2025-03-04T06:14:33Z) - Deep Minimax Classifiers for Imbalanced Datasets with a Small Number of Minority Samples [5.217870815854702]
We propose a novel minimax learning algorithm designed to minimize the risk of worst-performing classes.<n>Our proposed algorithm has a provable convergence property, and empirical results indicate that our algorithm performs better than or is comparable to existing methods.
arXiv Detail & Related papers (2025-02-24T08:20:02Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Federated Continual Learning Goes Online: Uncertainty-Aware Memory Management for Vision Tasks and Beyond [13.867793835583463]
We propose an uncertainty-aware memory-based approach to solve catastrophic forgetting.
We retrieve samples with specific characteristics, and - by retraining the model on such samples - we demonstrate the potential of this approach.
arXiv Detail & Related papers (2024-05-29T09:29:39Z) - Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective [4.31734012105466]
Machine Unlearning is the process of selectively discarding information designated to specific sets or classes of data from a pre-trained model.
We propose a methodology tailored for the purposeful elimination of information linked to a specific class of data from a pre-trained classification network.
Our novel approach, termed textbfPartially-Blinded Unlearning (PBU), surpasses existing state-of-the-art class unlearning methods, demonstrating superior effectiveness.
arXiv Detail & Related papers (2024-03-24T17:33:22Z) - An Information Theoretic Approach to Machine Unlearning [43.423418819707784]
To comply with AI and data regulations, the need to forget private or copyrighted information from trained machine learning models is increasingly important.<n>In this work, we address the zero-shot unlearning scenario, whereby an unlearning algorithm must be able to remove data given only a trained model and the data to be forgotten.<n>We derive a simple but principled zero-shot unlearning method based on the geometry of the model.
arXiv Detail & Related papers (2024-02-02T13:33:30Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
We propose a novel problem of distilling an unlabeled dataset into a set of small synthetic samples for efficient self-supervised learning (SSL)
We first prove that a gradient of synthetic samples with respect to a SSL objective in naive bilevel optimization is textitbiased due to randomness originating from data augmentations or masking.
We empirically validate the effectiveness of our method on various applications involving transfer learning.
arXiv Detail & Related papers (2023-10-10T10:48:52Z) - Data Summarization via Bilevel Optimization [48.89977988203108]
A simple yet powerful approach is to operate on small subsets of data.
In this work, we propose a generic coreset framework that formulates the coreset selection as a cardinality-constrained bilevel optimization problem.
arXiv Detail & Related papers (2021-09-26T09:08:38Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
This paper introduces the constrained Sufficiently Accurate model learning approach.
It provides examples of such problems, and presents a theorem on how close some approximate solutions can be.
The approximate solution quality will depend on the function parameterization, loss and constraint function smoothness, and the number of samples in model learning.
arXiv Detail & Related papers (2021-02-11T16:27:31Z) - Variational Bayesian Unlearning [54.26984662139516]
We study the problem of approximately unlearning a Bayesian model from a small subset of the training data to be erased.
We show that it is equivalent to minimizing an evidence upper bound which trades off between fully unlearning from erased data vs. not entirely forgetting the posterior belief.
In model training with VI, only an approximate (instead of exact) posterior belief given the full data can be obtained, which makes unlearning even more challenging.
arXiv Detail & Related papers (2020-10-24T11:53:00Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
We investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization.
We propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation.
Our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2020-10-19T14:19:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.