Deep Minimax Classifiers for Imbalanced Datasets with a Small Number of Minority Samples
- URL: http://arxiv.org/abs/2502.16948v1
- Date: Mon, 24 Feb 2025 08:20:02 GMT
- Title: Deep Minimax Classifiers for Imbalanced Datasets with a Small Number of Minority Samples
- Authors: Hansung Choi, Daewon Seo,
- Abstract summary: We propose a novel minimax learning algorithm designed to minimize the risk of worst-performing classes.<n>Our proposed algorithm has a provable convergence property, and empirical results indicate that our algorithm performs better than or is comparable to existing methods.
- Score: 5.217870815854702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The concept of a minimax classifier is well-established in statistical decision theory, but its implementation via neural networks remains challenging, particularly in scenarios with imbalanced training data having a limited number of samples for minority classes. To address this issue, we propose a novel minimax learning algorithm designed to minimize the risk of worst-performing classes. Our algorithm iterates through two steps: a minimization step that trains the model based on a selected target prior, and a maximization step that updates the target prior towards the adversarial prior for the trained model. In the minimization, we introduce a targeted logit-adjustment loss function that efficiently identifies optimal decision boundaries under the target prior. Moreover, based on a new prior-dependent generalization bound that we obtained, we theoretically prove that our loss function has a better generalization capability than existing loss functions. During the maximization, we refine the target prior by shifting it towards the adversarial prior, depending on the worst-performing classes rather than on per-class risk estimates. Our maximization method is particularly robust in the regime of a small number of samples. Additionally, to adapt to overparameterized neural networks, we partition the entire training dataset into two subsets: one for model training during the minimization step and the other for updating the target prior during the maximization step. Our proposed algorithm has a provable convergence property, and empirical results indicate that our algorithm performs better than or is comparable to existing methods. All codes are publicly available at https://github.com/hansung-choi/TLA-linear-ascent.
Related papers
- Embedding generalization within the learning dynamics: An approach based-on sample path large deviation theory [0.0]
We consider an empirical risk perturbation based learning problem that exploits methods from continuous-time perspective.
We provide an estimate in the small noise limit based on the Freidlin-Wentzell theory of large deviations.
We also present a computational algorithm that solves the corresponding variational problem leading to an optimal point estimates.
arXiv Detail & Related papers (2024-08-04T23:31:35Z) - Just How Flexible are Neural Networks in Practice? [89.80474583606242]
It is widely believed that a neural network can fit a training set containing at least as many samples as it has parameters.
In practice, however, we only find solutions via our training procedure, including the gradient and regularizers, limiting flexibility.
arXiv Detail & Related papers (2024-06-17T12:24:45Z) - A Universal Class of Sharpness-Aware Minimization Algorithms [57.29207151446387]
We introduce a new class of sharpness measures, leading to new sharpness-aware objective functions.
We prove that these measures are textitly expressive, allowing any function of the training loss Hessian matrix to be represented by appropriate hyper and determinants.
arXiv Detail & Related papers (2024-06-06T01:52:09Z) - Zero-Shot Sharpness-Aware Quantization for Pre-trained Language Models [88.80146574509195]
Quantization is a promising approach for reducing memory overhead and accelerating inference.
We propose a novel-aware quantization (ZSAQ) framework for the zero-shot quantization of various PLMs.
arXiv Detail & Related papers (2023-10-20T07:09:56Z) - Score Function Gradient Estimation to Widen the Applicability of Decision-Focused Learning [17.962860438133312]
Decision-focused learning (DFL) paradigm overcomes limitation by training to directly minimize a task loss, e.g. regret.
We propose an alternative method that makes no such assumptions, it combines smoothing with score function estimation which works on any task loss.
Experiments show that it typically requires more epochs, but that it is on par with specialized methods and performs especially well for the difficult case of problems with uncertainty in the constraints, in terms of solution quality, scalability, or both.
arXiv Detail & Related papers (2023-07-11T12:32:13Z) - Unsupervised Learning of Initialization in Deep Neural Networks via
Maximum Mean Discrepancy [74.34895342081407]
We propose an unsupervised algorithm to find good initialization for input data.
We first notice that each parameter configuration in the parameter space corresponds to one particular downstream task of d-way classification.
We then conjecture that the success of learning is directly related to how diverse downstream tasks are in the vicinity of the initial parameters.
arXiv Detail & Related papers (2023-02-08T23:23:28Z) - STEEL: Singularity-aware Reinforcement Learning [14.424199399139804]
Batch reinforcement learning (RL) aims at leveraging pre-collected data to find an optimal policy.
We propose a new batch RL algorithm that allows for singularity for both state and action spaces.
By leveraging the idea of pessimism and under some technical conditions, we derive a first finite-sample regret guarantee for our proposed algorithm.
arXiv Detail & Related papers (2023-01-30T18:29:35Z) - Algorithms that Approximate Data Removal: New Results and Limitations [2.6905021039717987]
We study the problem of deleting user data from machine learning models trained using empirical risk minimization.
We develop an online unlearning algorithm that is both computationally and memory efficient.
arXiv Detail & Related papers (2022-09-25T17:20:33Z) - Minimax rate of consistency for linear models with missing values [0.0]
Missing values arise in most real-world data sets due to the aggregation of multiple sources and intrinsically missing information (sensor failure, unanswered questions in surveys...).
In this paper, we focus on the extensively-studied linear models, but in presence of missing values, which turns out to be quite a challenging task.
This eventually requires to solve a number of learning tasks, exponential in the number of input features, which makes predictions impossible for current real-world datasets.
arXiv Detail & Related papers (2022-02-03T08:45:34Z) - Learning Minimax Estimators via Online Learning [55.92459567732491]
We consider the problem of designing minimax estimators for estimating parameters of a probability distribution.
We construct an algorithm for finding a mixed-case Nash equilibrium.
arXiv Detail & Related papers (2020-06-19T22:49:42Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
Partial-label learning (PLL) is a typical weakly supervised learning problem, where each training instance is equipped with a set of candidate labels among which only one is the true label.
Most existing methods elaborately designed as constrained optimizations that must be solved in specific manners, making their computational complexity a bottleneck for scaling up to big data.
This paper proposes a novel framework of classifier with flexibility on the model and optimization algorithm.
arXiv Detail & Related papers (2020-02-19T08:35:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.