Chest Disease Detection In X-Ray Images Using Deep Learning Classification Method
- URL: http://arxiv.org/abs/2505.22609v1
- Date: Wed, 28 May 2025 17:24:33 GMT
- Title: Chest Disease Detection In X-Ray Images Using Deep Learning Classification Method
- Authors: Alanna Hazlett, Naomi Ohashi, Timothy Rodriguez, Sodiq Adewole,
- Abstract summary: We investigate the performance across multiple classification models to classify chest X-ray images.<n>We fine-tuned these pre-trained architectures on a labeled medical x-ray images.<n>The initial results are promising with high accuracy and strong performance in key classification metrics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we investigate the performance across multiple classification models to classify chest X-ray images into four categories of COVID-19, pneumonia, tuberculosis (TB), and normal cases. We leveraged transfer learning techniques with state-of-the-art pre-trained Convolutional Neural Networks (CNNs) models. We fine-tuned these pre-trained architectures on a labeled medical x-ray images. The initial results are promising with high accuracy and strong performance in key classification metrics such as precision, recall, and F1 score. We applied Gradient-weighted Class Activation Mapping (Grad-CAM) for model interpretability to provide visual explanations for classification decisions, improving trust and transparency in clinical applications.
Related papers
- Chest X-ray Classification using Deep Convolution Models on Low-resolution images with Uncertain Labels [3.038642416291856]
We report classification results by experimenting on different input image sizes of Chest X-rays to deep CNN models.<n>We use an ensemble of multi-label classification models on frontal and lateral studies.<n>For pathologies Cardiomegaly, Consolidation and Edema, we obtain 3% higher accuracy with our model architecture.
arXiv Detail & Related papers (2025-04-12T01:13:00Z) - Forward-Forward Contrastive Learning [4.465144120325802]
We propose Forward Forward Contrastive Learning (FFCL) as a novel pretraining approach for medical image classification.
FFCL achieves superior performance (3.69% accuracy over ImageNet pretrained ResNet-18) over existing pretraining models in the pneumonia classification task.
arXiv Detail & Related papers (2023-05-04T15:29:06Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Explainable and Lightweight Model for COVID-19 Detection Using Chest
Radiology Images [0.0]
Convolutional Neural Networks (CNNs) are well suited for the image analysis tasks when trained on humongous amounts of data.
Most of the tools proposed for detection of COVID-19 claims to have high sensitivity and recalls but have failed to generalize and perform when tested on unseen datasets.
This study provides a detailed discussion of the success and failure of the proposed model at an image level.
arXiv Detail & Related papers (2022-12-28T11:48:29Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - COVID-19 Severity Classification on Chest X-ray Images [0.0]
In this work, we classify covid images based on the severity of the infection.
The ResNet-50 model produced remarkable classification results in terms of accuracy 95%, recall (0.94), and F1-Score (0.92), and precision (0.91)
arXiv Detail & Related papers (2022-05-25T12:01:03Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.