COVID-19 Severity Classification on Chest X-ray Images
- URL: http://arxiv.org/abs/2205.12705v1
- Date: Wed, 25 May 2022 12:01:03 GMT
- Title: COVID-19 Severity Classification on Chest X-ray Images
- Authors: Aditi Sagar, Aman Swaraj, Karan Verma
- Abstract summary: In this work, we classify covid images based on the severity of the infection.
The ResNet-50 model produced remarkable classification results in terms of accuracy 95%, recall (0.94), and F1-Score (0.92), and precision (0.91)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biomedical imaging analysis combined with artificial intelligence (AI)
methods has proven to be quite valuable in order to diagnose COVID-19. So far,
various classification models have been used for diagnosing COVID-19. However,
classification of patients based on their severity level is not yet analyzed.
In this work, we classify covid images based on the severity of the infection.
First, we pre-process the X-ray images using a median filter and histogram
equalization. Enhanced X-ray images are then augmented using SMOTE technique
for achieving a balanced dataset. Pre-trained Resnet50, VGG16 model and SVM
classifier are then used for feature extraction and classification. The result
of the classification model confirms that compared with the alternatives, with
chest X-Ray images, the ResNet-50 model produced remarkable classification
results in terms of accuracy (95%), recall (0.94), and F1-Score (0.92), and
precision (0.91).
Related papers
- Enhancing COVID-19 Diagnosis through Vision Transformer-Based Analysis
of Chest X-ray Images [0.0]
The research endeavor posits an innovative framework for the automated diagnosis of COVID-19, harnessing raw chest X-ray images.
The developed models were appraised in terms of their binary classification performance, discerning COVID-19 from Normal cases.
The proposed model evinced extraordinary precision, registering results of 99.92% and 99.84% for binary classification, 97.95% and 86.48% for ternary classification, and 86.81% for quaternary classification, respectively.
arXiv Detail & Related papers (2023-06-12T07:34:28Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Classification of COVID-19 in Chest X-ray Images Using Fusion of Deep
Features and LightGBM [0.0]
We propose a new technique that is faster and more accurate than the other methods reported in the literature.
The proposed method uses a combination of DenseNet169 and MobileNet Deep Neural Networks to extract the features of the patient's X-ray images.
The method achieved 98.54% and 91.11% accuracies in the two-class (COVID-19, Healthy) and multi-class (COVID-19, Healthy, Pneumonia) classification problems.
arXiv Detail & Related papers (2022-06-09T14:56:24Z) - Classification of COVID-19 on chest X-Ray images using Deep Learning
model with Histogram Equalization and Lungs Segmentation [1.6019444314820142]
We present our study based on deep learning architecture for detecting covid-19 infected lungs using chest X-rays.
Our novel approach combining well-known pre-processing techniques, feature extraction methods, and dataset balancing method, lead us to an outstanding rate of recognition of 98%.
arXiv Detail & Related papers (2021-12-05T05:04:38Z) - Vision Transformers for femur fracture classification [59.99241204074268]
The Vision Transformer (ViT) was able to correctly predict 83% of the test images.
Good results were obtained in sub-fractures with the largest and richest dataset ever.
arXiv Detail & Related papers (2021-08-07T10:12:42Z) - Classification of COVID-19 X-ray Images Using a Combination of Deep and
Handcrafted Features [0.0]
We use a combination of deep convolutional and handcrafted features extracted from X-ray chest scans to discriminate between healthy, common pneumonia, and COVID-19 patients.
We achieve an accuracy of 0.988 in the classification task with our combined approach compared to 0.963 and 0.983 accuracy for the handcrafted features with SVM and CNN respectively.
arXiv Detail & Related papers (2021-01-19T21:09:46Z) - Chest X-ray Image Phase Features for Improved Diagnosis of COVID-19
Using Convolutional Neural Network [2.752817022620644]
Recent research has shown radiography of COVID-19 patient contains salient information about the COVID-19 virus.
Chest X-ray (CXR) due to its faster imaging time, wide availability, low cost and portability gains much attention.
In this study, we design a novel multi-feature convolutional neural network (CNN) architecture for improved classification of COVID-19 from CXR images.
arXiv Detail & Related papers (2020-11-06T20:26:26Z) - Y-Net for Chest X-Ray Preprocessing: Simultaneous Classification of
Geometry and Segmentation of Annotations [70.0118756144807]
This work introduces a general pre-processing step for chest x-ray input into machine learning algorithms.
A modified Y-Net architecture based on the VGG11 encoder is used to simultaneously learn geometric orientation and segmentation of radiographs.
Results were evaluated by expert clinicians, with acceptable geometry in 95.8% and annotation mask in 96.2%, compared to 27.0% and 34.9% respectively in control images.
arXiv Detail & Related papers (2020-05-08T02:16:17Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.