Information Bottleneck-Guided Heterogeneous Graph Learning for Interpretable Neurodevelopmental Disorder Diagnosis
- URL: http://arxiv.org/abs/2502.20769v2
- Date: Tue, 05 Aug 2025 08:49:32 GMT
- Title: Information Bottleneck-Guided Heterogeneous Graph Learning for Interpretable Neurodevelopmental Disorder Diagnosis
- Authors: Yueyang Li, Lei Chen, Wenhao Dong, Shengyu Gong, Zijian Kang, Boyang Wei, Weiming Zeng, Hongjie Yan, Lingbin Bian, Zhiguo Zhang, Wai Ting Siok, Nizhuan Wang,
- Abstract summary: We propose the Interpretable Information Bottleneck Heterogeneous Graph Neural Network (I2B-HGNN)<n>I2B-HGNN applies information bottleneck principles to guide both brain connectivity modeling and cross-modal feature integration.<n>We show that I2B-HGNN achieves superior performance in diagnosing NDDs, exhibiting both high classification accuracy and the ability to provide interpretable biomarker identification.
- Score: 6.351889311288302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing interpretable models for neurodevelopmental disorders (NDDs) diagnosis presents significant challenges in effectively encoding, decoding, and integrating multimodal neuroimaging data. While many existing machine learning approaches have shown promise in brain network analysis, they typically suffer from limited interpretability, particularly in extracting meaningful biomarkers from functional magnetic resonance imaging (fMRI) data and establishing clear relationships between imaging features and demographic characteristics. Besides, current graph neural network methodologies face limitations in capturing both local and global functional connectivity patterns while simultaneously achieving theoretically principled multimodal data fusion. To address these challenges, we propose the Interpretable Information Bottleneck Heterogeneous Graph Neural Network (I2B-HGNN), a unified framework that applies information bottleneck principles to guide both brain connectivity modeling and cross-modal feature integration. This framework comprises two complementary components. The first is the Information Bottleneck Graph Transformer (IBGraphFormer), which combines transformer-based global attention mechanisms with graph neural networks through information bottleneck-guided pooling to identify sufficient biomarkers. The second is the Information Bottleneck Heterogeneous Graph Attention Network (IB-HGAN), which employs meta-path-based heterogeneous graph learning with structural consistency constraints to achieve interpretable fusion of neuroimaging and demographic data. The experimental results demonstrate that I2B-HGNN achieves superior performance in diagnosing NDDs, exhibiting both high classification accuracy and the ability to provide interpretable biomarker identification while effectively analyzing non-imaging data.
Related papers
- ConnectomeDiffuser: Generative AI Enables Brain Network Construction from Diffusion Tensor Imaging [36.89452147894995]
Brain network analysis plays a crucial role in diagnosing and monitoring neurodegenerative disorders such as Alzheimer's disease (AD)<n>Existing approaches for constructing structural brain networks from diffusion tensor imaging (DTI) often rely on specialized toolkits that suffer from inherent limitations.<n>This work proposes a novel diffusion-based framework for automated end-to-end brain network construction from DTI.
arXiv Detail & Related papers (2025-05-23T15:03:58Z) - Brain Network Classification Based on Graph Contrastive Learning and Graph Transformer [0.6906005491572401]
This paper proposes a novel model named PHGCL-DDGformer that integrates graph contrastive learning with graph transformers.
Experimental results on real-world datasets demonstrate that the PHGCL-DDGformer model outperforms existing state-of-the-art approaches in brain network classification tasks.
arXiv Detail & Related papers (2025-04-01T13:26:03Z) - MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically significant imaging modalities is challenging due to the scarcity of annotated data.
This paper investigates leveraging generative models to synthesize training data, to train segmentation models for underrepresented modalities.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - A Heterogeneous Graph Neural Network Fusing Functional and Structural Connectivity for MCI Diagnosis [5.626542453309023]
We propose a novel method that integrates functional and structural connectivity based on heterogeneous graph neural networks (HGNNs)
Experimental results indicate the proposed method is effective and superior to other algorithms, with a mean classification accuracy of 93.3%.
arXiv Detail & Related papers (2024-11-13T08:17:52Z) - Mew: Multiplexed Immunofluorescence Image Analysis through an Efficient Multiplex Network [84.88767228835928]
We introduce Mew, a novel framework designed to efficiently process mIF images through the lens of multiplex network.
Mew innovatively constructs a multiplex network comprising two distinct layers: a Voronoi network for geometric information and a Cell-type network for capturing cell-wise homogeneity.
This framework equips a scalable and efficient Graph Neural Network (GNN), capable of processing the entire graph during training.
arXiv Detail & Related papers (2024-07-25T08:22:30Z) - End-to-end Stroke imaging analysis, using reservoir computing-based effective connectivity, and interpretable Artificial intelligence [42.52549987351643]
We propose a reservoir computing-based and directed graph analysis pipeline.
The goal of this pipeline is to define an efficient brain representation for connectivity in stroke data.
This representation is used within a directed graph convolutional architecture and investigated with explainable artificial intelligence (AI) tools.
arXiv Detail & Related papers (2024-07-17T13:34:05Z) - MM-GTUNets: Unified Multi-Modal Graph Deep Learning for Brain Disorders Prediction [9.75237128240713]
We propose MM-GTUNets, an end-to-end graph transformer based multi-modal graph deep learning framework for brain disorders prediction.<n>We introduce Modality Reward Representation Learning (MRRL) which adaptively constructs population graphs using a reward system.<n>We also propose Adaptive Cross-Modal Graph Learning (ACMGL), which captures critical modality-specific and modality-shared features.
arXiv Detail & Related papers (2024-06-20T16:14:43Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
Existing deep learning solutions suffer from three major limitations.
We introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network.
Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets.
arXiv Detail & Related papers (2024-01-01T10:20:01Z) - Classification of developmental and brain disorders via graph
convolutional aggregation [6.6356049194991815]
We introduce an aggregator normalization graph convolutional network by leveraging aggregation in graph sampling.
The proposed model learns discriminative graph node representations by incorporating both imaging and non-imaging features into the graph nodes and edges.
We benchmark our model against several recent baseline methods on two large datasets, Autism Brain Imaging Data Exchange (ABIDE) and Alzheimer's Disease Neuroimaging Initiative (ADNI)
arXiv Detail & Related papers (2023-11-13T14:36:29Z) - Multi-modal Graph Neural Network for Early Diagnosis of Alzheimer's
Disease from sMRI and PET Scans [11.420077093805382]
We propose to use graph neural networks (GNN) that are designed to deal with problems in non-Euclidean domains.
In this study, we demonstrate how brain networks can be created from sMRI or PET images.
We then present a multi-modal GNN framework where each modality has its own branch of GNN and a technique is proposed to combine the multi-modal data.
arXiv Detail & Related papers (2023-07-31T02:04:05Z) - Investigating the Predictive Reproducibility of Federated Graph Neural
Networks using Medical Datasets [0.0]
We present the first work investigating the application of federated GNN models with application to classifying medical imaging and brain connectivity datasets.
We showed that federated learning boosts both the accuracy and accuracy of GNN models in such medical learning tasks.
arXiv Detail & Related papers (2022-09-13T14:32:03Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Characterization Multimodal Connectivity of Brain Network by Hypergraph
GAN for Alzheimer's Disease Analysis [30.99183477161096]
multimodal neuroimaging data to characterize brain network is currently an advanced technique for Alzheimer's disease(AD) Analysis.
We propose a novel Hypergraph Generative Adversarial Networks(HGGAN) to generate multimodal connectivity of Brain Network from rs-fMRI combination with DTI.
arXiv Detail & Related papers (2021-07-21T09:02:29Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.