LLM-ODDR: A Large Language Model Framework for Joint Order Dispatching and Driver Repositioning
- URL: http://arxiv.org/abs/2505.22695v1
- Date: Wed, 28 May 2025 13:14:55 GMT
- Title: LLM-ODDR: A Large Language Model Framework for Joint Order Dispatching and Driver Repositioning
- Authors: Tengfei Lyu, Siyuan Feng, Hao Liu, Hai Yang,
- Abstract summary: We propose a novel framework leveraging Large Language Models (LLMs) for joint Order Dispatching and Driver Repositioning (ODDR) in ride-hailing services.<n>Our framework significantly outperforms traditional methods in terms of effectiveness, adaptability to anomalous conditions, and decision interpretability.
- Score: 9.36976476514113
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ride-hailing platforms face significant challenges in optimizing order dispatching and driver repositioning operations in dynamic urban environments. Traditional approaches based on combinatorial optimization, rule-based heuristics, and reinforcement learning often overlook driver income fairness, interpretability, and adaptability to real-world dynamics. To address these gaps, we propose LLM-ODDR, a novel framework leveraging Large Language Models (LLMs) for joint Order Dispatching and Driver Repositioning (ODDR) in ride-hailing services. LLM-ODDR framework comprises three key components: (1) Multi-objective-guided Order Value Refinement, which evaluates orders by considering multiple objectives to determine their overall value; (2) Fairness-aware Order Dispatching, which balances platform revenue with driver income fairness; and (3) Spatiotemporal Demand-Aware Driver Repositioning, which optimizes idle vehicle placement based on historical patterns and projected supply. We also develop JointDR-GPT, a fine-tuned model optimized for ODDR tasks with domain knowledge. Extensive experiments on real-world datasets from Manhattan taxi operations demonstrate that our framework significantly outperforms traditional methods in terms of effectiveness, adaptability to anomalous conditions, and decision interpretability. To our knowledge, this is the first exploration of LLMs as decision-making agents in ride-hailing ODDR tasks, establishing foundational insights for integrating advanced language models within intelligent transportation systems.
Related papers
- ReAL-AD: Towards Human-Like Reasoning in End-to-End Autonomous Driving [27.75047397292818]
End-to-end autonomous driving has emerged as a promising approach to unify perception, prediction, and planning within a single framework.<n>We propose ReAL-AD, a Reasoning-Augmented Learning framework that structures decision-making in autonomous driving based on the three-tier human cognitive model.<n>We show that integrating our framework improves planning accuracy and safety by over 30%, making end-to-end autonomous driving more interpretable and aligned with human-like hierarchical reasoning.
arXiv Detail & Related papers (2025-07-16T02:23:24Z) - LeAD: The LLM Enhanced Planning System Converged with End-to-end Autonomous Driving [48.607991747956255]
We present LeAD, a dual-rate autonomous driving architecture integrating imitation learning-based end-to-end (E2E) frameworks with large language model (LLM) augmentation.<n>Our experimental evaluation in the CARLA Simulator demonstrates LeAD's superior handling of unconventional scenarios, achieving 71 points on Leaderboard V1 benchmark, with a route completion of 93%.
arXiv Detail & Related papers (2025-07-08T07:58:29Z) - VLAD: A VLM-Augmented Autonomous Driving Framework with Hierarchical Planning and Interpretable Decision Process [40.3578745624081]
We propose a vision-language autonomous driving model, which integrates a fine-tuned Visual Language Models (VLMs) with a state-of-the-art end-to-end system.<n>We implement a specialized fine-tuning approach using custom question-answer datasets designed specifically to improve the spatial reasoning capabilities of the model.<n>Our system produces interpretable natural language explanations of driving decisions, thereby increasing transparency and trustworthiness of the traditionally black-box end-to-end architecture.
arXiv Detail & Related papers (2025-07-02T01:52:40Z) - URB -- Urban Routing Benchmark for RL-equipped Connected Autonomous Vehicles [0.0]
Reinforcement learning (RL) can facilitate the development of such collective routing strategies.<n>We present our: Urban Routing Benchmark for RL-equipped Connected Autonomous Vehicles.<n>Our results suggest that, despite the lengthy and costly training, state-of-the-art MARL algorithms rarely outperformed humans.
arXiv Detail & Related papers (2025-05-23T10:54:53Z) - SOLVE: Synergy of Language-Vision and End-to-End Networks for Autonomous Driving [51.47621083057114]
SOLVE is an innovative framework that synergizes Vision-Language Models with end-to-end (E2E) models to enhance autonomous vehicle planning.<n>Our approach emphasizes knowledge sharing at the feature level through a shared visual encoder, enabling comprehensive interaction between VLM and E2E components.
arXiv Detail & Related papers (2025-05-22T15:44:30Z) - Enhancing Autonomous Driving Systems with On-Board Deployed Large Language Models [25.418353477628035]
This work proposes a hybrid architecture combining low-level Model Predictive Controller (MPC) with locally deployed Large Language Models (LLMs)<n>DecisionxLLM module evaluates robotic state information against natural language instructions to ensure adherence to desired driving behavior.<n>We propose an approach that exploits Retrieval Augmented Generation (RAG), Low Rank Adaptation (LoRA), fine-tuning, and quantization.
arXiv Detail & Related papers (2025-04-15T13:49:17Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Drive is a hybrid framework that integrates a Teacher LLM to guide an attention-based Student DRL policy.<n>A self-attention mechanism then fuses these strategies with the DRL agent's exploration, accelerating policy convergence and boosting robustness.
arXiv Detail & Related papers (2025-02-03T14:22:03Z) - OWLed: Outlier-weighed Layerwise Pruning for Efficient Autonomous Driving Framework [3.8320050452121692]
We introduce OWLed, the Outlier-Weighed Layerwise Pruning for Efficient Autonomous Driving Framework.<n>Our method assigns non-uniform sparsity ratios to different layers based on the distribution of outlier features.<n>To ensure the compressed model adapts well to autonomous driving tasks, we incorporate driving environment data into both the calibration and pruning processes.
arXiv Detail & Related papers (2024-11-12T10:55:30Z) - Making Large Language Models Better Planners with Reasoning-Decision Alignment [70.5381163219608]
We motivate an end-to-end decision-making model based on multimodality-augmented LLM.
We propose a reasoning-decision alignment constraint between the paired CoTs and planning results.
We dub our proposed large language planners with reasoning-decision alignment as RDA-Driver.
arXiv Detail & Related papers (2024-08-25T16:43:47Z) - EditFollower: Tunable Car Following Models for Customizable Adaptive Cruise Control Systems [28.263763430300504]
We propose a data-driven car-following model that allows for adjusting driving discourtesy levels.
Our model provides valuable insights for the development of ACC systems that take into account drivers' social preferences.
arXiv Detail & Related papers (2024-06-23T15:04:07Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous Driving [84.31119464141631]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.<n>Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day.
We propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks.
arXiv Detail & Related papers (2021-05-18T19:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.